Main Results

- Classification of properly embedded minimal planar domains in R³ (Meeks, Perez, Ros).
- Local Removable Singularity Theorem for minimal laminations (Meeks, Perez, Ros).
- Solution of the Calabi-Yau problem for arbitrary topological type (Ferrer, Martin, Meeks).
- Proof of the Stable Limit Leaf Theorem (Meeks, Perez, Ros).
- Curvature estimates and sharp mean curvature bounds for CMC foliations of 3-manifolds (Meeks, Perez, Ros).
- Nonexistence of non-minimal codimension one CMC foliations of R⁴ and R⁵ (Meeks, Perez, Ros).

Definition of minimal surface

A surface $f: M \to \mathbb{R}^3$ is minimal if:

- M has MEAN CURVATURE = 0.
- Small pieces have LEAST AREA.
- Small pieces have LEAST ENERGY.
- Small pieces occur as SOAP FILMS.
- Coordinate functions are HARMONIC.
- Conformal Gauss map

$$G: M \to S^2 = C \cup \{\infty\}.$$

MEROMORPHIC GAUSS MAP

Meromorphic Gauss map

Weierstrass Representation

Suppose $f: M \subset \mathbb{R}^3$ is minimal,

$$g: M \to C \cup \{\infty\},$$

is the meromorphic Gauss map,

$$dh = dx_3 + i * dx_3,$$

is the holomorphic height differential. Then

$$f(p) = \text{Re} \int^p \frac{1}{2} \left[\frac{1}{g} - g, \frac{i}{2} \left(\frac{1}{g} + g \right), 1 \right] dh.$$

$$\begin{aligned} \mathbf{M} &= \mathbf{C} \\ \mathbf{dh} &= \mathbf{dz} = \mathbf{dx} {+} \mathbf{i} \, \mathbf{dy} \\ \mathbf{g}(\mathbf{z}) &= \mathbf{e}^{\mathbf{iz}} \end{aligned}$$

$$\mathbf{M} = \mathbf{C} - \{(\mathbf{0}, \mathbf{0})\}$$

$$\mathbf{dh} = \frac{1}{z}\mathbf{dz}$$

$$\mathbf{g}(\mathbf{z}) = \mathbf{z}$$

I am foliated by circles

The family \mathcal{R}_t of Riemann minimal examples

Cylindrical parametrization of a Riemann minimal example

Cylindrical parametrization of a Riemann minimal example

Conformal compactification of a Riemann minimal example

The moduli space of genus-zero examples

Riemann minimal examples near helicoid limits

Theorem (Meeks, Perez and Ros)

A **PEMS** in **R**³ with genus zero and infinite topology is a Riemann minimal example.

We now outline the main steps of the proof of this theorem.

Throughout this outline,

 $M \subset \mathbb{R}^3$ denotes a **PEMS** with genus zero and infinite topology.

Step 1: Control the topology of M

Theorem (Frohman-Meeks, C-K-M-R)

Let $\Delta \subset \mathbb{R}^3$ be a **PEMS** with an infinite set of ends \mathcal{E} . After a rotation of Δ ,

- E has a natural linear ordering by relative heights of the ends over the xy-plane;
- A has one or two limit ends, each of which must be a top or bottom end in the ordering.

Theorem (Meeks, Perez, Ros)

The surface M has two limit ends.

Idea of the proof M has 2 limit ends. One studies the possible singular minimal lamination limits of homothetic shrinkings of M to obtain a contradiction if M has only one limit end.

A proper g = 0 surface with uncountable # of ends

S² - Cantor set

Step 2: Understand the geometry of M

M can be parametrized **conformally** as $\mathbf{f}: (\mathbf{S}^1 \times \mathbf{R}) - \mathcal{E} \to \mathbf{R}^3$ with $f_3(\theta, t) = t$ so that:

- The middle ends $\mathcal{E} = \{(\theta_n, t_n)\}_{n \in \mathbb{Z}}$ are planar.
- M has bounded curvature, uniform local area estimates and is quasiperiodic.
- For each t, consider the plane curve $\gamma_t(\theta) = \mathbf{f}(\theta,t)$ with speed $\lambda = \lambda_t(\theta) = |\gamma_t'(\theta)|$ and geodesic curvature $\kappa = \kappa_t(\theta)$. Then the **Shiffman function** $\mathbf{S_M} = \lambda \frac{\partial \kappa}{\partial \theta}$ extends to a bounded analytic function on $\mathbf{S^1} \times \mathbf{R}$.
- S_M is a **Jacobi function** when considered to be defined on M. $(\Delta 2K_M)S_M = 0$.

Step 3: Prove the Shiffman function S_M is integrable

 $\mathbf{S}_{\mathbf{M}}$ is **integrable** in the following sense. There exists a family \mathbf{M}_{t} of examples with $\mathbf{M}_{0} = \mathbf{M}$ such that the normal variational vector field to each \mathbf{M}_{t} corresponds to $\mathbf{S}_{\mathbf{M}_{t}}$.

The proof of integrability of S_M depends on:

- (△ 2K_M) has finite dimensional bounded kernel;
- S_M viewed as an infinitesimal variation of Weierstrass data defined on C, can be formulated by the KdV evolution equation.
 KdV theory completes proof of integrability.

The Korteweg-de Vries equation (KdV)

$$\dot{g}_s = \frac{i}{2} \left(g''' - 3 \frac{g'g''}{g} + \frac{3}{2} \frac{(g')^3}{g^2} \right) \in T_g \mathcal{W} \text{ (Shiffman)}$$

Question: Can we integrate \dot{g}_s ? (This solves the problem)

$$\dot{g}_s \stackrel{x=g'/g}{\longrightarrow} \dot{x} = \frac{i}{2} \left(x''' - \frac{3}{2} x^2 x' \right)^{u=ax'+bx^2} \dot{u} = -u''' - 6uu'$$

$$u = -\frac{3(g')^2}{4g^2} + \frac{g''}{2g}$$

KdV hierarchy (infinitesimal deformations of u)

$$\frac{\partial u}{\partial t_0} = -u' \\ \frac{\partial u}{\partial t_1} = -u''' - 6uu' \\ \frac{\partial u}{\partial t_2} = -u^{(5)} - 10uu''' - 20u'u'' - 30u^2u'$$
 All flows commute:
$$\frac{\partial u}{\partial t_n} \frac{\partial u}{\partial t_n} = \frac{\partial u}{\partial t_m} \frac{\partial u}{\partial t_n} \\ \vdots \\ u \text{ algebro-geometric } \stackrel{\text{def}}{\Leftrightarrow} \exists n, \ \frac{\partial u}{\partial t_n} \in \text{Span}\{\frac{\partial u}{\partial t_0}, \dots, \frac{\partial u}{\partial t_{n-1}}\}$$

Step 4: Show $S_M = 0$

The property that $\mathbf{S}_{M}=0$ is equivalent to the property that \mathbf{M} is foliated by circles and lines in horizontal planes.

Theorem (Riemann 1860)

If M is foliated by circles and lines in horizontal planes, then M is a Riemann minimal example.

Holomorphic integrability of S_M , together with the compactness of the moduli space of embedded examples of fixed flux, forces S_M to be linear, which requires the analytic data defining M to be periodic. In 1997, we proved that $S_M = 0$ for periodic examples. Hence, M is a Riemann minimal example.

Examples of foliations and laminations in the plane

 $\mathcal{F}=$ integral curves of a vector field.

 $\mathcal{L}=$ union of $\mathbf{S^1}$ and green and red spirals

Theorem (Geodesic lamination closure theorem)

If Δ is a Riemannian surface and $\Gamma \subset \Delta$ is a complete embedded geodesic, then the closure $\overline{\Gamma}$ is a geodesic lamination of Δ .

Isolated Singularities Conjecture

Conjecture (Gulliver, Lawson)

If $\mathbf{M} \subset \mathbf{B} - \{(0,0,0)\}$ is a smooth properly embedded minimal surface with $\partial \mathbf{M} \subset \partial \mathbf{B}$ and $\overline{\mathbf{M}} = \mathbf{M} \cup \{(0,0,0)\}$, then $\overline{\mathbf{M}}$ is a smooth compact minimal surface.

Not Possible

Local removable singularity theorem

Theorem (Meeks, Perez, Ros)

Let $\mathcal{S} \subset \mathbb{N}$ be a closed countable set in a 3-manifold \mathbb{N} and let \mathcal{L} be a minimal lamination of $\mathbb{N} - \mathcal{S}$. If in some small neighborhood of every isolated point p of \mathcal{S} , $|\mathbf{K}_{\mathcal{L}}|(x) \leq \frac{\mathbf{C}_p}{\mathbf{d}^2(\mathbf{x},\mathbf{p})}$, then:

- \mathcal{L} extends across \mathcal{S} to a minimal lamination $\overline{\mathcal{L}}$ of \mathbb{N} .
- The sublamination $\operatorname{Lim}(\overline{\mathcal{L}}) \subset \overline{\mathcal{L}}$ of limit leaves consists of stable minimal surfaces.

Application: Closure theorem for finite topology

Theorem (Meeks, Perez, Ros)

Let $M \subset N$ be a complete embedded finite topology minimal surface in a complete Riemannian 3-manifold. If \overline{M} is not a minimal lamination with M as a leaf, then the following hold:

- $\mathcal{L} = (\overline{M} M)$ is a minimal lamination of N with leaves whose two-sided covers are stable.
- M is proper in $\mathbb{N} \mathcal{L}$.
- If N is compact, then \mathcal{L} contains a leaf which is an embedded sphere or projective plane.

Application to the embedded Calabi-Yau problem

Theorem (Old Conjecture, Meeks, Perez, Ros)

A complete embedded minimal surface of finite topology in the 3-sphere $S^3 \subset \mathbb{R}^4$ is compact.

Proof.

Since M is noncompact, then M is a minimal lamination with a limit leaf L or $\overline{M}-M$ is a minimal lamination with a leaf L whose two-sided cover is stable. By the **Stable Limit Leaf Theorem**, in either case the two-sided cover of L is stable. But complete stable two-sided minimal surfaces **do not exist** in positive Ricci curvature **3**-manifolds!

Application to the embedded Calabi-Yau problem

Colding and **Minicozzi** proved the next result in the case of finite topology.

Theorem (Meeks, Perez, Ros)

If $M \subset \mathbb{R}^3$ be a complete, connected embedded minimal surface with finite genus, a countable number of ends and compact boundary, then M is properly embedded in \mathbb{R}^3 .

In particular, if $\Sigma \subset \mathbb{R}^3$ is a complete embedded bounded minimal surface, then every end of Σ has infinite genus or is a genus zero limit end.

Nonexistence results for the Calabi-Yau problems

Theorem (Embedded Topological Obstruction, Ferrer, Martin, Meeks)

If M is a nonorientable surface and has an infinite number of nonorientable ends, then M cannot properly embed in any smooth bounded domain of R³.

Theorem (Immersed Topological Obstruction, Martin, Meeks, Nadirashvili)

There exist bounded domains $D \subset \mathbb{R}^3$ which do not admit any complete, properly immersed minimal surfaces with at least one annular end.

Bounded embedded minimal surfaces

Conjecture (Embedded Calabi-Yau Conjectures Martin, Meeks, Nadirashvili; Meeks, Perez, Ros)

Let M be open surface.

- There exists a complete proper minimal embedding of M in every smooth bounded domain D ⊂ R³ iff M is orientable and every end has infinite genus.
- There exists a complete proper minimal embedding of M in some smooth bounded domain D ⊂ R³ iff every end of M has infinite genus and M has a finite number of nonorientable ends.
- There exists a complete proper minimal embedding of M in some particular non-smooth bounded domain
 D ⊂ R³ iff every end of M has infinite genus.

Disjoint limit sets of ends in bounded domains

Theorem (Solution of the Calabi-Yau Problem for Arbitrary Topology, Ferrer, Martin, Meeks)

Let **D** be a domain which is convex (possibly $D = \mathbb{R}^3$) or smooth and bounded. Given any open surface **M**, there exists a complete **proper** minimal immersion $f: M \to D$, such that the **limit sets** of distinct ends of **M** are disjoint.

This result and its **proof** represent the first key point in my approach with **Martin** and **Nadirashvili** to solve the existence implication in the Embedded Calabi-Yau Conjecture, including the nonorientable case.

Universal domain for the Calabi-Yau problem?

D= bounded domain, smooth except at p_{∞} . Ferrer, Martin and Meeks conjecture every open surface with only infinite genus ends properly embeds as a complete minimal surface in D.

Theorem (Stable Limit Leaf Theorem, Meeks, Perez, Ros)

The limit leaves of a codimension one H-lamination $\mathcal L$ of a Riemannian manifold N are stable.

Proof.

Assume: Dimension(\mathbb{N}) = 3.

First step: Interpolation result.

Below D(p, r) is a disk in a limit leaf **L** and the **blue** arcs represent graphical disks in leaves converging to **L**.

The interpolating graphs f_t between the H-graphs of $f_{t_{\alpha}}, f_{s_{\alpha}}$ satisfy

$$\lim_{t \to 0^+} rac{ extsf{H}_t(q) - extsf{H}}{t} = 0 \quad ext{for all } q \in D(p,r).$$

The interpolating graphs $q \mapsto \exp_q(\mathbf{f}_t(q)\eta(q)), t \in [t_\alpha, s_\alpha]$, where

$$\mathbf{f}_t = \mathbf{f}_{t_\alpha} + (t - t_\alpha) \frac{\mathbf{f}_{s_\alpha} - \mathbf{f}_{t_\alpha}}{s_\alpha - t_\alpha} = t \left[\frac{t_\alpha}{t} \cdot \frac{\mathbf{f}_{t_\alpha}}{t_\alpha} + \left(1 - \frac{t_\alpha}{t} \right) \cdot \frac{\mathbf{f}_{s_\alpha} - \mathbf{f}_{t_\alpha}}{s_\alpha - t_\alpha} \right],$$

satisfy

$$\lim_{t o 0^+} rac{\mathsf{H}_t(q) - \mathsf{H}}{t} = 0 \quad ext{for all } q \in D(p,r).$$

Assume: $\mathbf{H}=\mathbf{0}$ and $\mathbf{\Delta}\subset\mathbf{L}=$ unstable smooth compact subdomain. Let $\mathbf{\Delta}(s)$ be surfaces whose mean curvature increases to first order near $\mathbf{\Delta}$ and foliate the shaded region $\Omega(t)$ between $\mathbf{\Delta}$ and $\mathbf{\Delta}(t)$. Let \mathbf{V} be the unit normal field to this foliation. Let \mathbf{W} be the unit normal field to the red interpolated foliation containing \mathcal{L} . Note $\mathbf{Div}(\mathbf{V}) \leq \mathbf{Div}(\mathbf{W})$ in $\Omega(t)$. But the flux of \mathbf{V} across $\partial\Omega(t)$ is greater than the flux of \mathbf{W} across the same boundary. The divergence theorem gives a contradiction.

Applications: CMC foliations of 3-manifolds

Theorem (Curvature Estimates, Meeks, Perez, Ros)

Given $K \geq 0$, there exists $C_K \geq 0$ such that whenever N is a complete 3-manifold with absolute curvature bounded by K and $\mathcal F$ is a CMC foliation of N, then $|A|_{\mathcal F} \leq C_K$. Here $|A|_{\mathcal F}$ is the norm of the second fundamental form of the leaves of $\mathcal F$.

Corollary (Meeks)

A CMC foliation of \mathbb{R}^3 is a foliation by parallel planes

Corollary (Mean Curvature Bounds, Meeks, Perez, Ros)

If N is a complete 3-manifold with bounded absolute sectional curvature, then there is a uniform bound on the mean curvature of the leaves of any CMC foliation of N.

Proof of curvature estimates for CMC foliations

Proof.

After scaling and lifting to the universal cover, assume $K \leq 1$. If the theorem fails, there exist CMC foliations \mathcal{F}_n of \mathbb{N} and a sequence of "blow-up" points $p_n \in \mathbb{N}$ on leaves \mathbb{L}_n , where $\lambda_n = |\mathbf{A}|_{\mathbb{L}_n} \geq n$. The foliated metrically scaled balls $\lambda_n \mathbf{B}(p_n,1)$ converge to a "singular CMC foliation" $\mathcal{Z} = \{\Sigma_\alpha\}_\alpha$ of \mathbb{R}^3 such that:

- $|A|_{\mathcal{Z}} \leq 1$.
- ullet The leaf $oldsymbol{\Sigma}$ passing through the origin is nonflat.
- Z is not a minimal foliation.

Since $|\mathbf{A}|_{\mathcal{Z}} \leq 1$, after translations of \mathcal{Z} , we obtain another limit singular **CMC** foliation of \mathbf{R}^3 with a leaf passing through the origin having maximal **nonzero** mean curvature. But this leaf is then a **stable** sphere which is impossible.

Sharp mean curvature bounds

Theorem (Meeks, Perez, Ros)

Suppose that N is R^3 equipped with a complete homogeneously regular metric satisfying: the scalar curvature of N is bounded from below by a nonpositive constant -C. Suppose $\mathcal F$ is a CMC foliation of N. Then:

- The mean curvature **H** of any leaf of \mathcal{F} satisfies $\mathbf{H}^2 \leq \mathbf{C}$.
- Leaves of $\mathcal F$ with $|\mathbf H|=\sqrt{\mathbf C}$ are stable, have at most quadratic area growth and are asymptotically umbilic.
- If $C \ge 0$, then \mathcal{F} is a minimal foliation.

Corollary (Meeks, Perez, Ros)

The leaves of a codimension one CMC foliation of \mathbb{H}^3 have absolute mean curvature at most 1 and each leaf with absolute mean curvature 1 is a horosphere.

Sharp mean curvature bounds in dimension 5

Theorem (Meeks, Perez, Ros)

Suppose that N is a complete homogeneously regular manifold of dimension at most S and F is a codimension one CMC foliation of N. There exists a bound on the absolute mean curvature H of any leaf of F depending only on an upper bound of the absolute sectional curvature of N.

Ingredients of the proof:

- Nonexistence of stable H-hypersurfaces in R³ (C, E-N-R)
- Stable minimal hypersurfaces in R⁵ with Euclidean volume growth are hyperplanes (Schoen, Simon, Yau)
- Stable Limit Leaf Theorem

Corollary (Meeks, Perez, Ros)

A codimension one CMC foliation of \mathbb{R}^n , $n \leq 5$, is minimal.

