
Main Results
Classification of properly embedded minimal planar
domains in R3 (Meeks, Perez, Ros).

Local Removable Singularity Theorem for minimal
laminations (Meeks, Perez, Ros).

Solution of the Calabi-Yau problem for arbitrary
topological type (Ferrer, Martin, Meeks).

Proof of the Stable Limit Leaf Theorem (Meeks,
Perez, Ros).

Curvature estimates and sharp mean curvature
bounds for CMC foliations of 3-manifolds (Meeks,
Perez, Ros).

Nonexistence of non-minimal codimension one CMC
foliations of R4 and R5 (Meeks, Perez, Ros).



Definition of minimal surface

A surface f : M → R3 is minimal if:

M has MEAN CURVATURE = 0.

Small pieces have LEAST AREA.

Small pieces have LEAST ENERGY.

Small pieces occur as SOAP FILMS.

Coordinate functions are HARMONIC.

Conformal Gauss map

G : M → S2 = C ∪ {∞}.
MEROMORPHIC GAUSS MAP



Meromorphic Gauss map



Weierstrass Representation

Suppose f : M ⊂ R3 is minimal,

g : M → C ∪ {∞},

is the meromorphic Gauss map,

dh = dx3 + i ∗ dx3,

is the holomorphic height differential. Then
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1776 Meusnier - the Helicoid Image by Matthias Weber

M = C

dh = dz = dx+i dy

g(z) = eiz



1741 Euler - the Catenoid Image by Matthias Weber

M = C− {(0, 0)}

dh =
1

z
dz

g(z) = z



1860 Riemann’s discovery! Image by Matthias Weber

Figure:



The family Rt of Riemann minimal examples



Cylindrical parametrization of a Riemann minimal example



Cylindrical parametrization of a Riemann minimal example



Conformal compactification of a Riemann minimal example



The moduli space of genus-zero examples



Riemann minimal examples near helicoid limits



Classification of infinite topology g = 0 examples

Theorem (Meeks, Perez and Ros)

A PEMS in R3 with genus zero and
infinite topology is a Riemann minimal
example.

We now outline the main steps of the proof of this
theorem.

Throughout this outline,

M ⊂ R3 denotes a PEMS with genus zero and
infinite topology.



Step 1: Control the topology of M

Theorem (Frohman-Meeks, C-K-M-R)

Let ∆ ⊂ R3 be a PEMS with an infinite set of ends E .
After a rotation of ∆,

E has a natural linear ordering by relative heights of the
ends over the xy-plane;

∆ has one or two limit ends, each of which must be a top
or bottom end in the ordering.

Theorem (Meeks, Perez, Ros)

The surface M has two limit ends.

Idea of the proof M has 2 limit ends. One studies the
possible singular minimal lamination limits of homothetic
shrinkings of M to obtain a contradiction if M has only one
limit end.



A proper g = 0 surface with uncountable # of ends



Step 2: Understand the geometry of M

M can be parametrized conformally as
f : (S1×R)− E → R3 with f3(θ, t) = t so that:

The middle ends E = {(θn, tn)}n∈Z are planar.

M has bounded curvature, uniform local
area estimates and is quasiperiodic.

For each t, consider the plane curve
γt(θ) = f(θ, t) with speed λ = λt(θ) = |γ′t(θ)|
and geodesic curvature κ = κt(θ). Then the

Shiffman function SM = λ∂κ
∂θ extends to a

bounded analytic function on S1 × R.

SM is a Jacobi function when considered to be
defined on M. (∆− 2KM)SM = 0.



Step 3: Prove the Shiffman function SM is integrable

SM is integrable in the following sense. There
exists a family Mt of examples with M0 = M such
that the normal variational vector field to each
Mt corresponds to SMt

.
The proof of integrability of SM depends on:

(∆− 2KM) has finite dimensional bounded
kernel;

SM viewed as an infinitesimal variation of
Weierstrass data defined on C, can be
formulated by the KdV evolution equation.

KdV theory completes proof of integrability.



The Korteweg-de Vries equation (KdV)

ġ
S

= i
2

(
g ′′′ − 3g ′g ′′

g
+ 3

2
(g ′)3

g2

)
∈ TgW (Shiffman)

Question: Can we integrate ġ
S
? (This solves the problem)

(mKdV) Miura transf (KdV)

ġ
S

x=g ′/g−→ ẋ = i
2
(x ′′′ − 3

2
x2x ′)

u=ax ′+bx2

−→ u̇ = −u′′′ − 6uu′

u = −3(g ′)2

4g2 + g ′′

2g

KdV hierarchy (infinitesimal deformations of u)
∂u
∂t0

= −u′

∂u
∂t1
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∂u
∂t2
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Step 4: Show SM = 0

The property that SM = 0 is equivalent to the
property that M is foliated by circles and lines in
horizontal planes.

Theorem (Riemann 1860)

If M is foliated by circles and lines in horizontal
planes, then M is a Riemann minimal example.

Holomorphic integrability of SM, together with
the compactness of the moduli space of embedded
examples of fixed flux, forces SM to be linear,
which requires the analytic data defining M to be
periodic. In 1997, we proved that SM = 0 for
periodic examples. Hence, M is a Riemann
minimal example.



Examples of foliations and laminations in the plane

F = integral curves of a vector field.

L = union of S1 and green and red
spirals



Theorem (Geodesic lamination closure theorem)

If ∆ is a Riemannian surface and Γ ⊂ ∆ is a
complete embedded geodesic, then the closure Γ is
a geodesic lamination of ∆.



Isolated Singularities Conjecture

Conjecture (Gulliver, Lawson)

If M ⊂ B− {(0, 0, 0)} is a smooth properly embedded
minimal surface with ∂M ⊂ ∂B and M = M ∪ {(0, 0, 0)},
then M is a smooth compact minimal surface.



Local removable singularity theorem

Theorem (Meeks, Perez, Ros)

Let S ⊂ N be a closed countable set in a
3-manifold N and let L be a minimal lamination of
N− S. If in some small neighborhood of every

isolated point p of S, |KL|(x) ≤ Cp

d2(x,p) , then:

L extends across S to a minimal lamination L
of N.

The sublamination Lim(L) ⊂ L of limit leaves
consists of stable minimal surfaces.



Application: Closure theorem for finite topology

Theorem (Meeks, Perez, Ros)

Let M ⊂ N be a complete embedded finite
topology minimal surface in a complete Riemannian
3-manifold. If M is not a minimal lamination
with M as a leaf, then the following hold:

L = (M−M) is a minimal lamination of N
with leaves whose two-sided covers are stable.

M is proper in N− L.

If N is compact, then L contains a leaf which is
an embedded sphere or projective plane.



Application to the embedded Calabi-Yau problem

Theorem (Old Conjecture, Meeks, Perez, Ros)

A complete embedded minimal surface of finite
topology in the 3-sphere S3 ⊂ R4 is compact.

Proof.

Since M is noncompact, then M is a minimal
lamination with a limit leaf L or M−M is a minimal
lamination with a leaf L whose two-sided cover is
stable. By the Stable Limit Leaf Theorem, in
either case the two-sided cover of L is stable. But
complete stable two-sided minimal surfaces do not
exist in positive Ricci curvature 3-manifolds!



Application to the embedded Calabi-Yau problem

Colding and Minicozzi proved the next result in
the case of finite topology.

Theorem (Meeks, Perez, Ros)

If M ⊂ R3 be a complete, connected embedded
minimal surface with finite genus, a countable
number of ends and compact boundary, then M
is properly embedded in R3.

In particular, if Σ ⊂ R3 is a complete embedded
bounded minimal surface, then every end of Σ has
infinite genus or is a genus zero limit end.



Nonexistence results for the Calabi-Yau problems

Theorem (Embedded Topological Obstruction,
Ferrer, Martin, Meeks)

If M is a nonorientable surface and has an infinite number
of nonorientable ends, then M cannot properly embed in
any smooth bounded domain of R3.

Theorem (Immersed Topological Obstruction,
Martin, Meeks, Nadirashvili)

There exist bounded domains D ⊂ R3 which do not admit
any complete, properly immersed minimal surfaces with at
least one annular end.



Bounded embedded minimal surfaces

Conjecture (Embedded Calabi-Yau Conjectures
Martin, Meeks, Nadirashvili; Meeks, Perez, Ros)

Let M be open surface.
1 There exists a complete proper minimal embedding of M

in every smooth bounded domain D ⊂ R3 iff M is
orientable and every end has infinite genus.

2 There exists a complete proper minimal embedding of M
in some smooth bounded domain D ⊂ R3 iff every end
of M has infinite genus and M has a finite number of
nonorientable ends.

3 There exists a complete proper minimal embedding of M
in some particular non-smooth bounded domain
D ⊂ R3 iff every end of M has infinite genus.



Disjoint limit sets of ends in bounded domains

Theorem (Solution of the Calabi-Yau Problem for
Arbitrary Topology, Ferrer, Martin, Meeks)

Let D be a domain which is convex (possibly
D = R3) or smooth and bounded. Given any open
surface M, there exists a complete proper minimal
immersion f : M → D, such that the limit sets of
distinct ends of M are disjoint.

� This result and its proof represent the first key
point in my approach with Martin and
Nadirashvili to solve the existence implication in
the Embedded Calabi-Yau Conjecture, including the
nonorientable case.



Universal domain for the Calabi-Yau problem?

D = bounded domain, smooth except at p∞.
Ferrer, Martin and Meeks conjecture every open
surface with only infinite genus ends properly
embeds as a complete minimal surface in D.



Theorem (Stable Limit Leaf Theorem, Meeks, Perez, Ros)

The limit leaves of a codimension one H-lamination L of a
Riemannian manifold N are stable.
Proof.

Assume: Dimension(N) = 3.
First step: Interpolation result.
Below D(p, r) is a disk in a limit leaf L and the blue arcs represent
graphical disks in leaves converging to L.

The interpolating graphs ft between the H-graphs of ftα , fsα satisfy

lim
t→0+

Ht(q)−H

t
= 0 for all q ∈ D(p, r).



The interpolating graphs q 7→ expq(ft(q)η(q)), t ∈ [tα, sα], where

ft = ftα +(t− tα)
fsα − ftα
sα − tα

= t

[
tα
t
· ftα

tα
+

(
1− tα

t

)
· fsα − ftα

sα − tα

]
,

satisfy

lim
t→0+

Ht(q)−H

t
= 0 for all q ∈ D(p, r).



Assume: H = 0 and ∆ ⊂ L = unstable smooth compact subdomain.

Let ∆(s) be surfaces whose mean curvature increases to first order near

∆ and foliate the shaded region Ω(t) between ∆ and ∆(t). Let V be

the unit normal field to this foliation. Let W be the unit normal field to

the red interpolated foliation containing L. Note Div(V) ≤ Div(W) in

Ω(t). But the flux of V across ∂Ω(t) is greater than the flux of W

across the same boundary. The divergence theorem gives a contradiction.



Applications: CMC foliations of 3-manifolds

Theorem (Curvature Estimates, Meeks, Perez, Ros)

Given K ≥ 0, there exists CK ≥ 0 such that whenever N is a
complete 3-manifold with absolute curvature bounded by K
and F is a CMC foliation of N, then |A|F ≤ CK. Here |A|F is
the norm of the second fundamental form of the leaves of F .

Corollary (Meeks)

A CMC foliation of R3 is a foliation by parallel planes

Corollary (Mean Curvature Bounds, Meeks, Perez, Ros)

If N is a complete 3-manifold with bounded absolute sectional
curvature, then there is a uniform bound on the mean
curvature of the leaves of any CMC foliation of N.



Proof of curvature estimates for CMC foliations

Proof.

After scaling and lifting to the universal cover, assume
K ≤ 1. If the theorem fails, there exist CMC foliations Fn of
N and a sequence of ”blow-up” points pn ∈ N on leaves Ln,
where λn = |A|Ln ≥ n. The foliated metrically scaled balls
λnB(pn, 1) converge to a ”singular CMC foliation”
Z = {Σα}α of R3 such that:

|A|Z ≤ 1.

The leaf Σ passing through the origin is nonflat.

Z is not a minimal foliation.

Since |A|Z ≤ 1, after translations of Z, we obtain another
limit singular CMC foliation of R3 with a leaf passing through
the origin having maximal nonzero mean curvature. But this
leaf is then a stable sphere which is impossible.



Sharp mean curvature bounds

Theorem (Meeks, Perez, Ros)

Suppose that N is R3 equipped with a complete
homogeneously regular metric satisfying: the scalar
curvature of N is bounded from below by a nonpositive
constant −C. Suppose F is a CMC foliation of N. Then:

The mean curvature H of any leaf of F satisfies H2 ≤ C.

Leaves of F with |H| =
√

C are stable, have at most
quadratic area growth and are asymptotically umbilic.

If C ≥ 0, then F is a minimal foliation.

Corollary (Meeks, Perez, Ros)

The leaves of a codimension one CMC foliation of H3 have
absolute mean curvature at most 1 and each leaf with
absolute mean curvature 1 is a horosphere.



Sharp mean curvature bounds in dimension 5

Theorem (Meeks, Perez, Ros)

Suppose that N is a complete homogeneously regular manifold
of dimension at most 5 and F is a codimension one CMC
foliation of N. There exists a bound on the absolute mean
curvature H of any leaf of F depending only on an upper
bound of the absolute sectional curvature of N.

Ingredients of the proof:

Nonexistence of stable H-hypersurfaces in R3 (C, E-N-R)

Stable minimal hypersurfaces in R5 with Euclidean volume
growth are hyperplanes (Schoen, Simon, Yau)

Stable Limit Leaf Theorem

Corollary (Meeks, Perez, Ros)

A codimension one CMC foliation of Rn, n ≤ 5, is minimal.


