
Calculus on the complex plane C

Let z = x + iy be the complex variable on the complex plane
C == R× iR where i =

√
−1.

Definition

A function f : C → C is holomorphic if it is complex differentiable,
i.e., for each z ∈ C,

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists.

When f is non-constant, this is equivalent to the property: Except
for isolated points, if c1, c2 are any two orthogonal curves passing
through a point p ∈ C, then their image curves f ◦ c1, f ◦ c2 are
orthogonal curves at f(p).

This property is also equivalent to the property that the function f
is angle preserving (conformal) except at isolated points, when it is
not constant.



Calculus on the complex plane C

Definition

A function f : M1 → M2 between two surfaces is called
holomorphic if it is angle preserving except at isolated points, when
it is not constant. It is called meromorphic if M2 = S2 is the unit
sphere in R3.

A function f : R2 → R is called harmonic if f satisfies the mean
value property, i.e., the value of f(p) at any point p ∈ R2, is equal
to the average value of the function on every circle centered at p.

Also f : R2 → R is harmonic if its Laplacian vanishes, ∆f = 0

Example

If T is a temperature function in equilibrium on a domain D in the plane,
then T is a harmonic function.

Theorem

A harmonic function f : M → R on a surface is the real part of some
holomorphic function F : M → C = R× iR.



Definition of minimal surface

A surface f : M → R3 is minimal if:

M has MEAN CURVATURE = 0.

Small pieces have LEAST AREA.

Small pieces have LEAST ENERGY.

Small pieces occur as SOAP FILMS.

Coordinate functions are HARMONIC.

Conformal Gauss map

G : M → S2 = C ∪ {∞}.
MEROMORPHIC GAUSS MAP



Meromorphic Gauss map



Weierstrass Representation

Suppose f : M ⊂ R3 is minimal,

g : M → C ∪ {∞},

is the meromorphic Gauss map,

dh = dx3 + i ∗ dx3,

is the holomorphic height differential. Then

f(p) = Re

∫ p 1

2

[
1

g
− g,

i

2

(
1

g
+ g

)
, 1

]
dh.



Helicoid Image by Matthias Weber

M = C

dh = dz = dx+i dy

g(z) = eiz



Catenoid Image by Matthias Weber

M = C− {(0, 0)}

dh =
1

z
dz

g(z) = z



Catenoid. Image by Matthias Weber

Key Properties:

In 1741, Euler discovered that when a catenary x1 = cosh x3 is
rotated around the x3-axis, then one obtains a surface which
minimizes area among surfaces of revolution after prescribing
boundary values for the generating curves.

In 1776, Meusnier verified that the catenoid has zero mean
curvature.

This surface has genus zero, two ends and total curvature −4π.



Catenoid. Image by Matthias Weber

Key Properties:

Together with the plane, the catenoid is the only minimal surface of
revolution (Euler and Bonnet).

It is the unique complete, embedded minimal surface with genus
zero, finite topology and more than one end (López and Ros).

The catenoid is characterized as being the unique complete,
embedded minimal surface with finite topology and two ends
(Schoen).



Helicoid. Image by Matthias Weber

Key Properties:

Proved to be minimal by Meusnier in 1776.

The helicoid has genus zero, one end and infinite total curvature.

Together with the plane, the helicoid is the only ruled minimal
surface (Catalan).

It is the unique simply-connected, complete, embedded minimal
surface (Meeks and Rosenberg, Colding and Minicozzi).



Enneper surface. Image by Matthias Weber

Key Properties:

Weierstrass Data: M = C, g(z) = z , dh = z dz .

Discovered by Enneper in 1864, using his newly formulated analytic
representation of minimal surfaces in terms of holomorphic data,
equivalent to the Weierstrass representation.

This surface is non-embedded, has genus zero, one end and total
curvature −4π.

It contains two horizontal orthogonal lines and the surface has two
vertical planes of reflective symmetry.



Meeks minimal Möbius strip. Image by Matthias Weber

Key Properties:

Weierstrass Data: M = C− {0}, g(z) = z2
(

z+1
z−1

)
,

dh = i
(

z2−1
z2

)
dz .

Found by Meeks, the minimal surface defined by this Weierstrass
pair double covers a complete, immersed minimal surface M1 ⊂ R3

which is topologically a Möbius strip.

This is the unique complete, minimally immersed surface in R3 of
finite total curvature −6π (Meeks).



Bent helicoids. Image by Matthias Weber

Key Properties:

Weierstrass Data: M = C− {0}, g(z) = −z zn+i
izn+i

, dh = zn+z−n

2z
dz .

Discovered in 2004 by Meeks and Weber and independently by Mira.



Costa torus. Image by Matthias Weber

Key Properties:

Weierstrass Data: Based on the square torus
M = C/Z2 − {(0, 0), ( 1

2 , 0), (0, 1
2 )}, g(z) = P(z).

Discovered in 1982 by Costa.

This is a thrice punctured torus with total curvature −12π, two
catenoidal ends and one planar middle end. Hoffman and Meeks proved
its global embeddedness.

The Costa surface contains two horizontal straight lines l1, l2 that
intersect orthogonally, and has vertical planes of symmetry bisecting the
right angles made by l1, l2.



Costa-Hoffman-Meeks surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: Defined in terms of cyclic covers of S2
.

These examples Mk generalize the Costa torus, and are complete,
embedded, genus k minimal surfaces with two catenoidal ends and one
planar middle end. Both existence and embeddedness were given by
Hoffman and Meeks in 1990.



Deformation of the Costa torus. Image by M. Weber

Key Properties:

The Costa surface is defined on a square torus M1,1, and
admits a deformation (found by Hoffman and Meeks,
unpublished) where the planar end becomes catenoidal.



Genus-one helicoid.

Key Properties:

The unique end of M is asymptotic to a helicoid, so that one of the
two lines contained in the surface is an axis (like in the genuine
helicoid).

Discovered in 1993 by Hoffman, Karcher and Wei.

Proved embedded in 2007 by Hoffman, Weber and Wolf.



Singly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: M = (C ∪ {∞})− {±e±iθ/2}, g(z) = z ,
dh = iz dz∏

(z±e±iθ/2)
, for fixed θ ∈ (0, π/2].

Discovered by Scherk in 1835, these surfaces denoted by Sθ form a
1-parameter family of complete, embedded, genus zero minimal surfaces
in a quotient of R3 by a translation, and have four annular ends.

Viewed in R3, each surface Sθ is invariant under reflection in the (x1, x3)
and (x2, x3)-planes and in horizontal planes at integer heights, and can be
thought of geometrically as a desingularization of two vertical planes
forming an angle of θ.



Doubly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: M = (C ∪ {∞})− {±e±iθ/2}, g(z) = z ,
dh = z dz∏

(z±e±iθ/2)
, where θ ∈ (0, π/2] (the case θ = π

2
.

It has implicit equation ez cos y = cos x .

Discovered by Scherk in 1835, are the conjugate surfaces to the
singly-periodic Scherk surfaces.

.



Schwarz Primitive triply-periodic surface. Image by Weber

Key Properties:

Weierstrass Data: M = {(z , w) ∈ (C ∪ {∞})2 | w 2 = z8 − 14z4 + 1},
g(z , w) = z , dh = z dz

w
.

Discovered by Schwarz in the 1880’s, it is also called the P-surface.

This surface has a rank three symmetry group and is invariant by
translations in Z3.

Such a structure, common to any triply-periodic minimal surface
(TPMS), is also known as a crystallographic cell or space tiling.
Embedded TPMS divide R3 into two connected components (called
labyrinths in crystallography), sharing M as boundary (or interface) and
interweaving each other.



Schwarz Diamond surfaces. Image by M. Weber

Discovered by Schwarz, it is the conjugate surface to the
P-surface, and is another famous example of an embedded
TPMS.



Schoen’s triply-periodic Gyroid surface. Image by Weber

In the 1960’s, Schoen made a surprising discovery: another
minimal surface locally isometric to the Primitive and
Diamond surface is an embedded TPMS, and named this
surface the Gyroid.



1860 Riemann’s discovery! Image by Matthias Weber

Figure:



Riemann minimal examples. Image by Matthias Weber

Key Properties:

Discovered in 1860 by Riemann, these examples are invariant under
reflection in the (x1, x3)-plane and by a translation Tλ.

After appropriate scalings, they converge to catenoids as t → 0 or
to helicoids as t →∞.

The Riemann minimal examples have the amazing property that
every horizontal plane intersects the surface in a circle or in a line.

Meeks, Pérez and Ros proved these surfaces are the only properly
embedded minimal surfaces in R3 of genus 0 and infinite topology.



Introduction and history of the problem

Problem: Classify all PEMS in R3 with genus zero.
k = #{ends}

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid
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Introduction and history of the problem

Problem: Classify all PEMS in R3 with genus zero.
k = #{ends}

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and k > 1 ⇒ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal sur-
faces = minimal laminations.

Meeks-Rosenberg, 2005: k = 1 ⇒ plane, helicoid.

Theorem (Meeks, Pérez, Ros, 2007)

k = ∞ ⇒ Riemann minimal examples.



The family Rt of Riemann minimal examples



Cylindrical parametrization of a Riemann minimal example



1860 Riemann’s discovery! Image by Matthias Weber

Figure:



Cylindrical parametrization of a Riemann minimal example



Conformal compactification of a Riemann minimal example



The moduli space of genus-zero examples



Riemann minimal examples near helicoid limits



A Riemann minimal example Image by Matthias Weber

Figure:



1860 Riemann’s discovery! Image by Matthias Weber

Figure:


