Calculus on the complex plane C

Let z=x+iy be the complex variable on the complex plane $\mathbf{C} == \mathbb{R} \times i\mathbb{R}$ where $i=\sqrt{-1}$.

Definition

• A function $f: \mathbb{C} \to \mathbb{C}$ is **holomorphic** if it is complex differentiable, i.e., for each $z \in \mathbb{C}$,

$$\mathbf{f}'(z) = \lim_{h \to 0} \frac{\mathbf{f}(z+h) - \mathbf{f}(z)}{h}$$

exists.

- When **f** is non-constant, this is equivalent to the property: Except for isolated points, if c_1 , c_2 are any two orthogonal curves passing through a point $p \in \mathbf{C}$, then their image curves $\mathbf{f} \circ c_1$, $\mathbf{f} \circ c_2$ are orthogonal curves at $\mathbf{f}(p)$.
- This property is also equivalent to the property that the function f
 is angle preserving (conformal) except at isolated points, when it is
 not constant.

Calculus on the complex plane C

Definition

- A function $f \colon M_1 \to M_2$ between two surfaces is called **holomorphic** if it is angle preserving except at isolated points, when it is not constant. It is called **meromorphic** if $M_2 = S^2$ is the unit sphere in \mathbb{R}^3 .
- A function $f: \mathbb{R}^2 \to \mathbb{R}$ is called **harmonic** if f satisfies the **mean** value property, i.e., the value of f(p) at any point $p \in \mathbb{R}^2$, is equal to the average value of the function on every circle centered at p.
- Also $f \colon \mathbf{R}^2 \to \mathbf{R}$ is harmonic if its Laplacian vanishes, $\Delta f = 0$

Example

If T is a temperature function in equilibrium on a domain $\mathbf D$ in the plane, then T is a harmonic function.

Theorem

A harmonic function $f: M \to R$ on a surface is the real part of some holomorphic function $F: M \to C = \mathbb{R} \times i\mathbb{R}$.

Definition of minimal surface

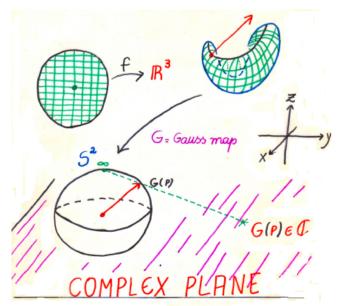
A surface $f: M \to \mathbb{R}^3$ is minimal if:

- M has MEAN CURVATURE = 0.
- Small pieces have **LEAST AREA**.
- Small pieces have LEAST ENERGY.
- Small pieces occur as SOAP FILMS.
- Coordinate functions are HARMONIC.
- Conformal Gauss map

$$G: M \to S^2 = C \cup \{\infty\}.$$

MEROMORPHIC GAUSS MAP

Meromorphic Gauss map



Weierstrass Representation

Suppose $f: M \subset \mathbb{R}^3$ is minimal,

$$g: M \to C \cup \{\infty\},$$

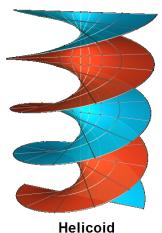
is the meromorphic Gauss map,

$$dh = dx_3 + i * dx_3,$$

is the holomorphic height differential. Then

$$f(p) = \text{Re} \int^p \frac{1}{2} \left[\frac{1}{g} - g, \frac{i}{2} \left(\frac{1}{g} + g \right), 1 \right] dh.$$

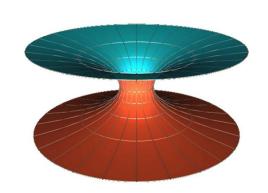
$$\begin{aligned} \mathbf{M} &= \mathbf{C} \\ \mathbf{dh} &= \mathbf{dz} = \mathbf{dx} {+} \mathbf{i} \, \mathbf{dy} \\ \mathbf{g}(\mathbf{z}) &= \mathbf{e}^{\mathbf{iz}} \end{aligned}$$

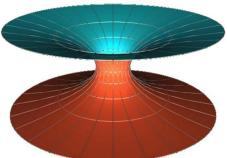


$$\mathbf{M} = \mathbf{C} - \{(\mathbf{0},\mathbf{0})\}$$

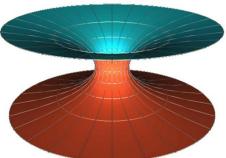
$$\mathbf{dh} = \frac{1}{z}\mathbf{dz}$$

$$\mathbf{g}(\mathbf{z}) = \mathbf{z}$$

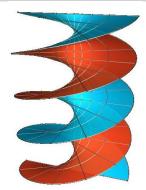




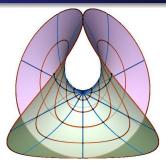
- In 1741, **Euler** discovered that when a catenary $x_1 = \cosh x_3$ is rotated around the x_3 -axis, then one obtains a surface which minimizes area among surfaces of revolution after prescribing boundary values for the generating curves.
- In 1776, Meusnier verified that the catenoid has zero mean curvature.
- This surface has genus zero, two ends and total curvature -4π .



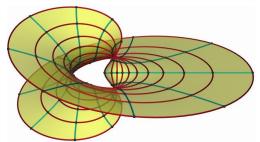
- Together with the plane, the catenoid is the only minimal surface of revolution (Euler and Bonnet).
- It is the unique complete, embedded minimal surface with genus zero, finite topology and more than one end (López and Ros).
- The catenoid is characterized as being the unique complete, embedded minimal surface with finite topology and two ends (Schoen).



- Proved to be minimal by Meusnier in 1776.
- The helicoid has genus zero, one end and infinite total curvature.
- Together with the plane, the helicoid is the only ruled minimal surface (Catalan).
- It is the unique simply-connected, complete, embedded minimal surface (Meeks and Rosenberg, Colding and Minicozzi).



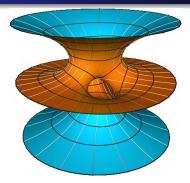
- Weierstrass Data: M = C, g(z) = z, dh = z dz.
- Discovered by Enneper in 1864, using his newly formulated analytic representation of minimal surfaces in terms of holomorphic data, equivalent to the Weierstrass representation.
- This surface is non-embedded, has genus zero, one end and total curvature -4π .
- It contains two horizontal orthogonal lines and the surface has two vertical planes of reflective symmetry.



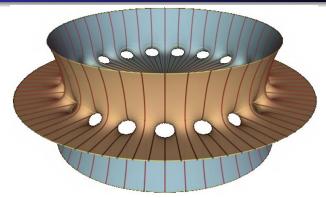
- Weierstrass Data: $\mathbf{M} = \mathbf{C} \{0\}$, $g(z) = z^2 \left(\frac{z+1}{z-1}\right)$, $dh = i \left(\frac{z^2-1}{z^2}\right) dz$.
- Found by Meeks, the minimal surface defined by this Weierstrass pair double covers a complete, immersed minimal surface $M_1 \subset \mathbb{R}^3$ which is topologically a Möbius strip.
- This is the unique complete, minimally immersed surface in \mathbb{R}^3 of finite total curvature -6π (Meeks).



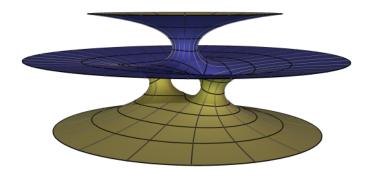
- Weierstrass Data: $\mathbf{M} = \mathbf{C} \{0\}$, $g(z) = -z \frac{z^n + i}{iz^n + i}$, $dh = \frac{z^n + z^{-n}}{2z} dz$.
- Discovered in 2004 by Meeks and Weber and independently by Mira.



- Weierstrass Data: Based on the square torus $\mathbf{M} = \mathbf{C}/\mathbf{Z}^2 \{(\mathbf{0},\mathbf{0}),(\tfrac{1}{2},\mathbf{0}),(\mathbf{0},\tfrac{1}{2})\}, \quad g(z) = \mathcal{P}(z).$
- Discovered in 1982 by Costa.
- ullet This is a thrice punctured torus with total curvature -12π , two catenoidal ends and one planar middle end. **Hoffman** and **Meeks** proved its global embeddedness.
- The Costa surface contains two horizontal straight lines l_1 , l_2 that intersect orthogonally, and has vertical planes of symmetry bisecting the right angles made by l_1 , l_2 .

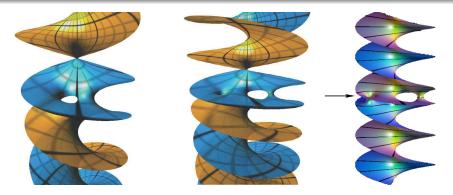


- ullet Weierstrass Data: Defined in terms of cyclic covers of \mathbb{S}^2 .
- These examples M_k generalize the Costa torus, and are complete, embedded, genus k minimal surfaces with two catenoidal ends and one planar middle end. Both existence and embeddedness were given by Hoffman and Meeks in 1990.

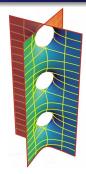


 The Costa surface is defined on a square torus M_{1,1}, and admits a deformation (found by Hoffman and Meeks, unpublished) where the planar end becomes catenoidal.

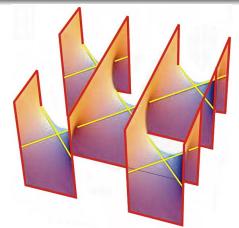
Genus-one helicoid.



- The unique end of M is asymptotic to a helicoid, so that one of the two lines contained in the surface is an axis (like in the genuine helicoid).
- Discovered in 1993 by Hoffman, Karcher and Wei.
- Proved embedded in 2007 by Hoffman, Weber and Wolf.

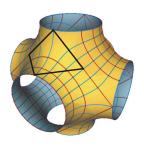


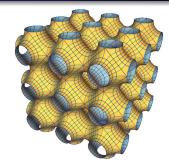
- Weierstrass Data: $\mathbf{M} = (\mathbf{C} \cup \{\infty\}) \{\pm e^{\pm i\theta/2}\}, \quad g(z) = z,$ $dh = \frac{iz \, dz}{\prod (z \pm e^{\pm i\theta/2})}, \text{ for fixed } \theta \in (0, \pi/2].$
- Discovered by Scherk in 1835, these surfaces denoted by \mathcal{S}_{θ} form a 1-parameter family of complete, embedded, genus zero minimal surfaces in a quotient of \mathbb{R}^3 by a translation, and have four annular ends.
- Viewed in \mathbb{R}^3 , each surface \mathcal{S}_θ is invariant under reflection in the (x_1, x_3) and (x_2, x_3) -planes and in horizontal planes at integer heights, and can be thought of geometrically as a desingularization of two vertical planes forming an angle of θ .



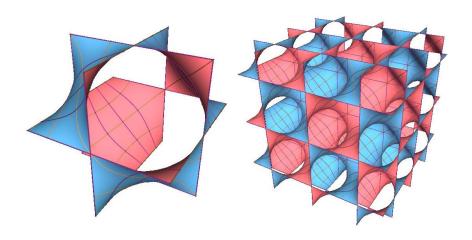
- Weierstrass Data: $\mathbf{M} = (\mathbf{C} \cup \{\infty\}) \{\pm e^{\pm i\theta/2}\}, \quad g(z) = z,$ $dh = \frac{z \, dz}{\prod (z \pm e^{\pm i\theta/2})}, \quad \text{where } \theta \in (0, \pi/2] \text{ (the case } \theta = \frac{\pi}{2}.$
- It has implicit equation $e^z \cos y = \cos x$.
- Discovered by Scherk in 1835, are the conjugate surfaces to the singly-periodic Scherk surfaces.

Schwarz Primitive triply-periodic surface. Image by Weber





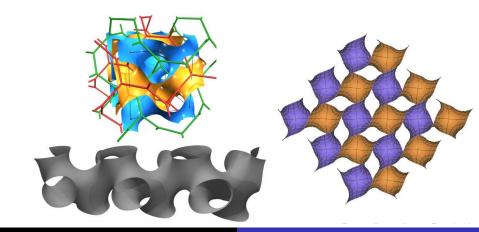
- Weierstrass Data: $\mathbf{M} = \{(z, w) \in (\mathbf{C} \cup \{\infty\})^2 \mid w^2 = z^8 14z^4 + 1\}, g(z, w) = z, dh = \frac{z dz}{w}.$
- Discovered by **Schwarz** in the 1880's, it is also called the P-surface.
- This surface has a rank three symmetry group and is invariant by translations in Z³.
- Such a structure, common to any triply-periodic minimal surface (TPMS), is also known as a crystallographic cell or space tiling.
 Embedded TPMS divide R³ into two connected components (called labyrinths in crystallography), sharing M as boundary (or interface) and interweaving each other.



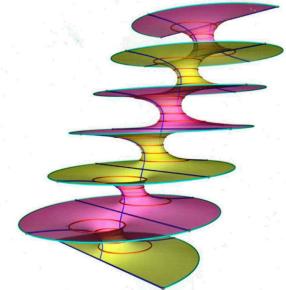
Discovered by Schwarz, it is the conjugate surface to the P-surface, and is another famous example of an embedded **TPMS**.

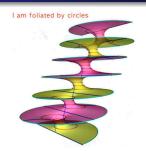
Schoen's triply-periodic Gyroid surface. Image by Weber

In the 1960's, **Schoen** made a surprising discovery: another minimal surface locally isometric to the Primitive and Diamond surface is an embedded **TPMS**, and named this surface the **Gyroid**.



I am foliated by circles





- Discovered in 1860 by **Riemann**, these examples are invariant under reflection in the (x_1, x_3) -plane and by a translation T_{λ} .
- After appropriate scalings, they converge to catenoids as $t \to 0$ or to helicoids as $t \to \infty$.
- The Riemann minimal examples have the amazing property that every horizontal plane intersects the surface in a circle or in a line.
- Meeks, Pérez and Ros proved these surfaces are the only properly embedded minimal surfaces in R³ of genus 0 and infinite topology.

Problem: Classify all PEMS in \mathbb{R}^3 with genus zero. $\mathbf{k} = \#\{\text{ends}\}\$ López-Ros, 1991: Finite total curvature \Rightarrow plane, catenoid

Problem: Classify all PEMS in \mathbb{R}^3 with genus zero. $\mathbf{k} = \#\{\text{ends}\}\$ López-Ros, 1991: Finite total curvature \Rightarrow plane, catenoid

Problem: Classify all PEMS in R³ with genus zero.

 $\mathbf{k} = \#\{\text{ends}\}$

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Problem: Classify all PEMS in R³ with genus zero.

 $\mathbf{k} = \#\{\mathsf{ends}\}$

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and $k > 1 \Rightarrow$ finite total curvature.

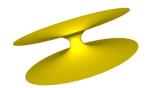
Problem: Classify all PEMS in R³ with genus zero.

 $\mathbf{k} = \#\{\mathsf{ends}\}$

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and $\mathbf{k}>\mathbf{1}\Rightarrow$ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal surfaces = minimal laminations.



Problem: Classify all PEMS in R³ with genus zero.

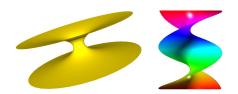
 $\mathbf{k} = \#\{\mathsf{ends}\}$

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

Collin, 1997: Finite topology and $\mathbf{k} > \mathbf{1} \Rightarrow$ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal surfaces = minimal laminations.

Meeks-Rosenberg, 2005: $\mathbf{k} = \mathbf{1} \Rightarrow \mathsf{plane}$, helicoid.



Problem: Classify all PEMS in R³ with genus zero.

 $\mathbf{k} = \#\{\text{ends}\}$

López-Ros, 1991: Finite total curvature ⇒ plane, catenoid

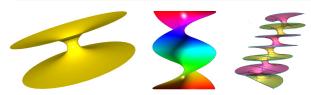
Collin, 1997: Finite topology and $k > 1 \Rightarrow$ finite total curvature.

Colding-Minicozzi, 2004: limits of simply connected minimal surfaces = minimal laminations.

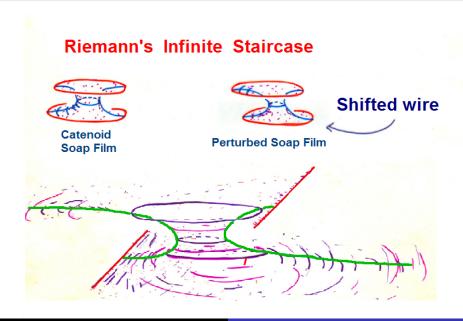
Meeks-Rosenberg, 2005: $\mathbf{k} = \mathbf{1} \Rightarrow \mathsf{plane}$, helicoid.

Theorem (Meeks, Pérez, Ros, 2007)

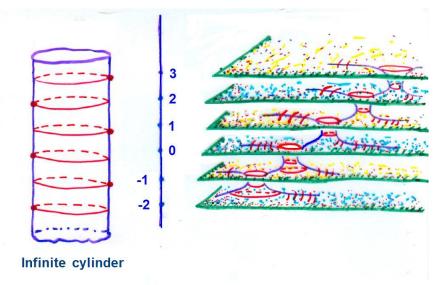
 $\mathbf{k} = \infty \Rightarrow$ Riemann minimal examples.



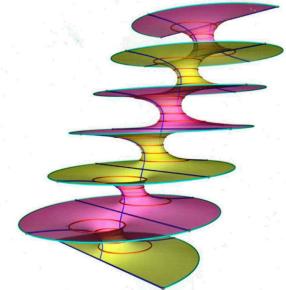
The family \mathcal{R}_t of Riemann minimal examples



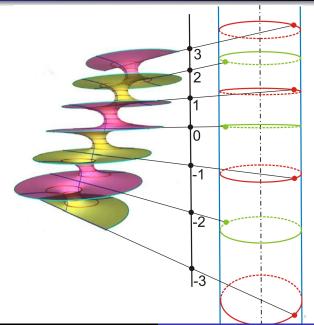
Cylindrical parametrization of a Riemann minimal example



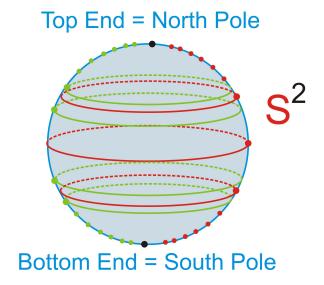
I am foliated by circles



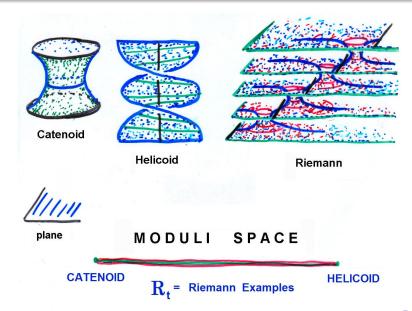
Cylindrical parametrization of a Riemann minimal example



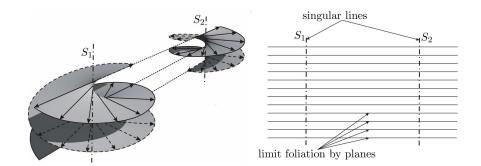
Conformal compactification of a Riemann minimal example

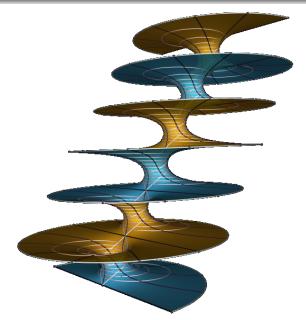


The moduli space of genus-zero examples



Riemann minimal examples near helicoid limits





I am foliated by circles

