Definition (parabolic, δ-parabolic)

$(\mathbf{N}, g)=\mathbf{n}$-dimensional Riemannian manifold, $\partial \mathbf{N} \neq \emptyset$.

- \mathbf{N} is parabolic if every bounded harmonic function on N is determined by its boundary values.
- Given $\delta>0$, let $\mathbf{N}(\delta)=\left\{p \in \mathbf{N} \mid \mathbf{d}_{\mathbf{N}}(p, \partial \mathbf{N}) \geq \delta\right\}$, where \mathbf{d}_{N} stands for the Riemannian distance. We say that \mathbf{N} is δ-parabolic if for all $\delta>0, \mathbf{N}(\delta)$ is parabolic.

Definition (recurrent, transient)

$(\mathbf{N}, g)=\mathbf{n}$-dimensional Riemannian manifold, $\partial \mathbf{N}=\varnothing$.

- \mathbf{N} is recurrent if for any non-empty open set $\mathbf{U} \subset \mathbf{N}$ $(\mathbf{U} \neq \mathbf{N})$ with smooth boundary, $\mathbf{N}-\mathbf{U}$ is parabolic.
- N is called transient if it is not recurrent.

Definition (harmonic measure μ_{p})

Given a Riemannian surface (\mathbf{M}, g) with $\partial \mathbf{M} \neq \varnothing$ and a point $p \in \operatorname{Int}(\mathbf{M})$, define the harmonic measure μ_{p} with respect to p as follows.

- Let $\mathbf{I} \subset \partial \mathbf{M}$ be a non-empty open set. Consider a compact exhaustion $\mathbf{M}_{1} \subset \mathbf{M}_{2} \subset \ldots$ of \mathbf{M}.
- Given $k \in \mathbb{N}, \mathbf{h}_{k}: \mathbf{M}_{k} \rightarrow[0,1]=$ the (bounded) harmonic function on \mathbf{M}_{k} with boundary values 1 on the interior of $\mathbf{I} \cap \mathbf{M}_{k}$ and 0 on $\partial \mathbf{M}_{k}-\overline{\mathbf{I}}$. Extend \mathbf{h}_{k} by zero to \mathbf{M}.
- The functions \mathbf{h}_{k} limit to a unique bounded harmonic function $h_{1}: \mathbf{M} \rightarrow[0,1]$ (defined except at countably many points in $\partial \mathbf{I} \subset \partial \mathbf{M})$.
- Define

$$
\mu_{\mathbf{p}}(\mathbf{I})=\mathbf{h}_{1}(\mathbf{p}) .
$$

- μ_{p} extends to a Borel measure μ_{p} on $\partial \mathbf{M}$.

Also $\mu_{p}(1)=$ the probability of a Brownian path beginning at p, of hitting $\partial \mathbf{M}$ the first time somewhere on the interval \mathbf{I}. So, the harmonic measure of M is sometimes called the hitting measure with respect to p.

Question

How to computationally calculate the hitting measure μ_{p} at an interval I contained in the boundary of a smooth domain $\Omega \subset \mathbf{R}^{2}$, where $p \in \operatorname{Int}(\Omega)$?

For $n \in \mathbb{N}$ and $\varepsilon>0$, consider the set $\Gamma(p, n, \varepsilon)$ of all \boldsymbol{n}-step orthogonal random ε-walks starting at p, i.e. continuous mappings $\sigma:[0, n \varepsilon] \rightarrow \mathbf{R}^{2}$ which begin at $\sigma(0)=p$ and for any integer $k=0, \ldots, n-1$,

$$
\left(\left.\sigma\right|_{[k \varepsilon,(k+1) \varepsilon]}\right)(t)=\sigma(k \varepsilon) \pm t e_{i}
$$

where e_{i} is one of the unit vectors $(1,0),(0,1)$.

- Define $\mu_{p}(n, \varepsilon)(I)$ to be the probability that some $\sigma \in \boldsymbol{\Gamma}(p, n, \varepsilon)$ crosses $\partial \Omega$ a first time in I.
- As $n \rightarrow \infty, \mu_{p}(n, \varepsilon)(\mathrm{I})$ converges to a number $\mu_{p}(\varepsilon)(\mathrm{I}) \in[0,1]$.
- As $\varepsilon \rightarrow 0$, the measures $\mu_{p}(\varepsilon)$ converge to a measure μ_{p} on $\partial \mathbf{M}$ equal to the hitting measure obtained from Brownian motion starting at p.

FIGURE TO BE ADDED

Example

Consider the annular domain $\mathbf{A} \subset \mathbf{R}^{2}$ in the figure above. Let $\mathbf{I} \subset \partial \mathbf{A}$ be on open interval in $\partial \mathbf{A}$. Note that the function $\mathbf{P}_{\mathbf{I}}: \mathbf{A}-\partial \mathbf{I} \rightarrow[0,1]$, defined by: $\mathbf{P}_{\mathbf{l}}(x)$ is the probability of a Brownian path starting at x to exit \mathbf{A} a first time on I, satisfies the infinitesimal mean value property. Hence $P_{I}(x)$ is a harmonic function on $\mathbf{A}-\partial \mathbf{I}$ with boundary values 1 on \mathbf{I} and 0 on \mathbf{A} - $\overline{\mathbf{I}}$.

The next proposition is straightforward to prove.

Proposition

$(\mathbf{M}, g)=$ Riemaniann manifold with $\partial \mathbf{M} \neq \emptyset$. The following are equivalent:
(1) M is parabolic.
(2) There exists a point $p \in \operatorname{Int}(\mathbf{M})$ such that the harmonic measure μ_{p} is full, i.e. $\int_{\partial \mathrm{M}} \mu_{p}=1$.
(3) Given any $p \in \operatorname{Int}(\mathbf{M})$ and any bounded harmonic function $f: \mathbf{M} \rightarrow \mathbb{R}$, then $f(p)=\int_{\partial \mathbf{M}} f \mu_{p}$.
(4) The universal covering of M is parabolic.

Furthermore, if there exists a proper, non-negative
superharmonic function on \mathbf{M}, then \mathbf{M} is parabolic. When \mathbf{M} is simply-connected and two-dimensional, then the existence of such a function is equivalent to being parabolic.

Proposition (Liouville Theorem)

Every positive harmonic function on a recurrent Riemannian manifold is constant.

Proof.

Let $\mathbf{h}: \mathbf{M} \rightarrow \mathbb{R}$ be a non-constant, positive harmonic function on a recurrent Riemannian manifold and $t \in \mathbb{R}=$ any positive regular value of \mathbf{h}. Then $\mathbf{M}_{t}=\mathbf{h}^{-1}((0, t])=\mathbf{M}-\mathbf{h}^{-1}((t, \infty))$ is parabolic and $\left.\mathbf{h}\right|_{M_{t}}$ is a bounded harmonic function with constant boundary value t. Hence, $\left.\mathbf{h}\right|_{\mathbf{M}_{t}}$ is constant and so \mathbf{h} is also constant. This contradicts that t is a regular value of h. This contradiction completes the proof.

Corollary

The complex plane C is recurrent for Brownian motion and so, bounded harmonic functions on C are constant.

Proof.
Let $\mathbf{W}(\varepsilon)=\mathbf{C}-\left\{z^{2}<\varepsilon\right\}$ and $p \in \mathbf{W}(\varepsilon)$. It suffices to prove that for any $\varepsilon \in(0,1)$, the harmonic measure μ_{p} of $\partial \mathbf{W}(\varepsilon)$ is full. This holds since $1+\ln |z|-\ln \varepsilon$ is a proper positive harmonic function on $\mathbf{W}(\varepsilon)$.

Definition

Given a region $\mathbf{W} \subset \mathbf{R}^{\mathbf{3}}$, a function $\mathbf{h}: \mathbf{W} \rightarrow \mathbb{R}$ is said to be a universal superharmonic function on \mathbf{W} if its restriction to any minimal surface $\mathbf{M} \subset \mathbf{W}$ is superharmonic.

Example (classical universal superharmonic functions)

Universal superharmonic functions on R^{3} include x_{1} or $-x_{1}^{2}$.
Collin, Kusner, Meeks and Rosenberg proved the following useful inequality valid for any immersed minimal surface in R^{3} :

$$
\begin{equation*}
|\Delta \ln r| \leq \frac{\left|\nabla x_{3}\right|^{2}}{r^{2}} \quad \text { in } \mathbf{M}-\left(x_{3} \text {-axis }\right) \tag{1}
\end{equation*}
$$

where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and ∇, Δ denote the intrinsic gradient and laplacian on \mathbf{M}. Using this estimate, a direct calculation proves:

Lemma (Collin, Kusner, Meeks, Rosenberg)

i) $\ln r-x_{3}^{2}$ is a universal superharmonic function in $\left\{r^{2} \geq \frac{1}{2}\right\}$.
ii) $\ln r-x_{3} \arctan x_{3}+\frac{1}{2} \ln \left(x_{3}^{2}+1\right)$ is a universal superharmonic function in $\left\{r^{2} \geq x_{3}^{2}+1\right\}$.

Theorem (Collin, Kusner, Meeks, Rosenberg)

Let M be a connected, properly immersed minimal surface in \mathbf{R}^{3}, possibly with boundary. Then, every component of the intersection of M with a closed half-space is a parabolic surface.

Assertion

Any component \mathbf{C} of $\mathbf{M}(+)=\mathbf{M} \cap\left\{x_{3} \geq 0\right\}$ for fixed $n \in \mathbb{N}$ $\mathrm{C}_{n}=\mathrm{C} \cap x_{3}^{-1}([0, n])$ is parabolic.

Proof.

Note $\mathbf{h}=\ln r-x_{3}^{2}$ is universal superharmonic and proper in $\mathrm{C}_{n} \cap\left\{r^{2} \geq \frac{1}{2}\right\}$. Furthermore, h is positive outside a compact domain of \mathbf{C}_{n}, which implies that $\mathbf{C}_{n} \cap\left\{r^{2} \geq \frac{1}{2}\right\}$ is parabolic. Since \mathbf{M} is proper and $\left\{r^{2} \leq \frac{1}{2}\right\} \cap\left\{0 \leq x_{3} \leq n\right\}$ is compact, then $\mathrm{C}_{n}-\left\{r^{2}>\frac{1}{2}\right\}$ is a compact subset of C_{n}. Since parabolicity is not affected by adding compact surface domains, C_{n} is parabolic.

Proof that \mathbf{C} is parabolic.

Fix a point $p \in \mathrm{C}$ with $x_{3}(p)>0$ and let μ_{p}^{C} be the harmonic measure of $\partial \mathrm{C}$ with respect to p. Since x_{3} is a bounded harmonic function on the parabolic surface \mathbf{C}_{n}, for \mathbf{n} large:

$$
x_{3}(p)=\int_{\partial \mathbf{C}_{n}} x_{3} \mu_{p}^{n} \geq n \int_{\partial \mathbf{C}_{n} \cap x_{3}^{-1}(n)} \mu_{p}^{n}
$$

where μ_{p}^{n} is the harmonic measure of \mathbf{C}_{n} with respect to p. Since μ_{p}^{n} is full on $\partial \mathrm{C}_{n}$,

$$
\int_{\partial \mathrm{C}_{n}-x_{3}^{-1}(n)} \mu_{p}^{n}=1-\int_{\partial \mathrm{C}_{n} \cap x_{3}^{-1}(n)} \mu_{p}^{n} \geq 1-\frac{x_{3}(p)}{n} \stackrel{(n \rightarrow \infty)}{\longrightarrow} 1 .
$$

Suppose now that \mathbf{M} and \mathbf{N} are Riemannian manifolds with $\mathbf{M} \subset \mathbf{N}, \partial$ is a component of $\partial \mathbf{M} \cap \partial \mathbf{N}, p \in \operatorname{Int}(\mathbf{M})$ with μ_{p}^{M} and $\mu_{p}^{\mathrm{N}}=$ the harmonic measures. The definition of harmonic measure implies $\int_{\partial} \mu_{p}^{\mathbf{M}} \leq \int_{\partial} \mu_{p}^{\mathrm{N}} \leq 1$. By letting $\mathbf{M}=\mathbf{C}_{n}, \mathbf{N}=\mathbf{C}$ and $\partial=\partial \mathbf{C}_{n}-x_{3}^{-1}(n)$, the above inequality implies $\lim _{n} \int_{\partial \mathrm{C}_{n}-x_{3}^{-1}(n)} \mu_{\rho}^{\mathrm{C}} \geq 1$. Thus $\int_{\partial \mathrm{C}} \mu_{\rho}^{\mathrm{C}}=1$ and the proof is complete.

Corollary (Collin, Kusner, Meeks, Rosenberg)

Suppose M is a properly immersed minimal surface which intersects some plane in a compact set. Then M is recurrent for Brownian motion. In particular, M satisfies the Liouville Conjecture below.

Conjecture (Liouville Conjecture, Meeks)

If $\mathbf{M} \in \mathbf{R}^{\mathbf{3}}$ is a properly embedded minimal surface and $h: M \rightarrow \mathbb{R}$ is a positive harmonic function, then h is constant.

Theorem (Collin, Kusner, Meeks, Rosenberg)

A properly embedded minimal surface $\mathbf{M} \subset \mathbf{R}^{3}$ with two limit ends intersects some plane in a compact set. Hence, such an M is recurrent.

Conjecture (Multiple-End Recurrency Conjecture, Meeks)

If $\mathbf{M} \in \mathbf{R}^{\mathbf{3}}$ is a properly embedded minimal surface with more than one end, then \mathbf{M} is recurrent for Brownian motion.

Theorem (Meeks, Pérez, Ros)

- Properly embedded minimal surfaces in \mathbf{R}^{3} of genus 0 are recurrent (in fact they are conformally equivalent to the sphere \mathbb{S}^{2} punctured in a closed countable set \mathbf{E} with 2 limit points when \mathbf{E} is an infinite set).
- Properly embedded doubly periodic minimal surfaces of finite topology in their quotient satisfy the Liouville Conjecture but are never recurrent.

Example (Catenoids/planes in the complement of M)

$\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}=$ a properly embedded minimal surface with more than one end. Callahan, Hoffman and Meeks proved:

- In one of the closed complements of \mathbf{M} in \mathbf{R}^{3}, there exists a non-compact, properly embedded minimal surface $\boldsymbol{\Sigma}$ with compact boundary and finite total curvature.
- The ends of $\boldsymbol{\Sigma}$ are of catenoidal or planar type, and the embeddedness of $\boldsymbol{\Sigma}$ forces its ends to have parallel normal vectors at infinity.

Definition

In the above situation, the limit tangent plane at infinity of \mathbf{M} is the plane in $\mathbf{R}^{\mathbf{3}}$ passing through the origin, whose normal vector equals (up to sign) the limiting normal vector at the ends of $\boldsymbol{\Sigma}$. Such a plane is unique (Callahan, Hoffman, Meeks).

Theorem (Ordering Theorem, Frohman, Meeks)

Let $\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}$ be a properly embedded minimal surface with more than one end and horizontal limit tangent plane at infinity. Then:

- The space $\mathcal{E}(\mathbf{M})$ of ends of \mathbf{M} is linearly ordered geometrically by the relative heights of the ends over the $\left(x_{1}, x_{2}\right)$-plane, and embeds topologically in $[0,1]$ in an ordering preserving way.
- This ordering satisfies: If M is properly isotopic to a properly embedded minimal surface \mathbf{M}^{\prime} with horizontal limit tangent plane at infinity, then the associated ordering of the ends of \mathbf{M}^{\prime} either agrees with or is opposite to the ordering coming from M .

Definition

For an $\mathbf{M} \subset \mathbf{R}^{3}$ satisfying the hypotheses of the ordering theorem:

- The top end e_{T} of \mathbf{M} is the unique maximal element in $\mathcal{E}(\mathrm{M})$ for the ordering given in this theorem (recall that $\mathcal{E}(M) \subset[0,1]$ is compact, hence e_{T} exists).
- The bottom end e_{B} of \mathbf{M} is the unique minimal element in $\mathcal{E}(\mathrm{M})$.
- If $e \in \mathcal{E}(\mathbf{M})$ is neither the top nor the bottom end of \mathbf{M}, then it is called a middle end of M.

Theorem (Collin, Kusner, Meeks, Rosenberg)

Let $\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}$ be a properly embedded minimal surface with more than one end and horizontal limit tangent plane at infinity. Then:

- Any limit end of \mathbf{M} must be a top or bottom end of \mathbf{M}. In particular, M can have at most two limit ends, each middle end is simple and the number of ends of M is countable.
- For each middle end e of M , there exists a positive integer $\mathbf{m}(\mathrm{e})$ and an end representative E such that

$$
\lim _{R \rightarrow \infty} \frac{\operatorname{Area}(\mathrm{E} \cap \mathbb{B}(R))}{\pi R^{2}}=\mathbf{m}(\mathrm{e})
$$

Furthermore, no end representative of e has smaller area growth than E .
The parity of $\mathrm{m}(\mathrm{e})$ is called the parity of the middle end e .

Assertion

Suppose E $\subset \mathbf{W}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid r \geq 1,0 \leq x_{3} \leq 1\right\}$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Then

- $\left|\nabla x_{3}\right|^{2}, \Delta \ln r \in L^{1}(E)$.
- Outside a subdomain of E of finite area, $\left|\nabla x_{3}\right|$ is almost equal to 1 .

Proof.

Let $f: \mathbf{E} \rightarrow \mathbb{R}$ be the restricted proper superharmonic $\ln r-x_{3}^{2}$ to \mathbf{W}. Suppose $f(\partial \mathbf{E}) \subset[-1, c]$ for some $c>0$. Replace \mathbf{E} by $f^{-1}[c, \infty)$ and let $\mathrm{E}(t)=f^{-1}[c, t]$ for $t>c$. Assuming that both c, t are regular values of f, the Divergence Theorem gives

$$
\int_{E(t)} \Delta f d A=-\int_{f^{-1}(c)}|\nabla f| d s+\int_{f^{-1}(t)}|\nabla f| d s
$$

Since f is superharmonic, the function $t \mapsto \int_{\mathrm{E}(t)} \Delta f d A$ is monotonically decreasing and bounded from below by $-\int_{f^{-1}(c)}|\nabla f| d s$. Thus Δf lies in $L^{1}(E)$. Furthermore, $|\Delta f|=\left.\left.|\Delta \ln r-2| \nabla x_{3}\right|^{2}|\geq-|\Delta \ln r|+2| \nabla x_{3}\right|^{2}$. Since $|\Delta \ln r| \leq \frac{\left|\nabla x_{3}\right|^{2}}{r^{2}}$, we have $|\Delta f| \geq\left(2-\frac{1}{r^{2}}\right)\left|\nabla x_{3}\right|^{2}$. Since $r^{2} \geq 1$ in W, then $|\Delta f| \geq\left|\nabla x_{3}\right|^{2}$. Thus, both $\left|\nabla x_{3}\right|^{2}$ and $\Delta \ln r$ are in $L^{1}(\mathrm{E})$.

Assertion (quadratic area growth of E)

There exists a $\mathrm{C}>0$ such that: $\int_{\mathrm{E} \cap\{r \leq t\}} d A=\frac{\mathrm{C}}{2} t^{2}+o\left(t^{2}\right)$, where $t^{-2} o\left(t^{2}\right) \rightarrow 0$ as $t \rightarrow \infty$.

Proof.

Let $r_{0}=\left.\max r\right|_{\partial \mathbf{E}}$. Redefine $\mathbf{E}(t)$ to be the subdomain of \mathbf{E} that lies inside the region $\left\{r_{0}^{2} \leq x_{1}^{2}+x_{2}^{2} \leq t^{2}\right\}$. Since
$\int_{\mathrm{E}(t)} \Delta \ln r d A=-\int_{r=r_{0}} \frac{|\nabla r|}{r} d s+\int_{r=t} \frac{|\nabla r|}{r} d s=$ const. $+\frac{1}{t} \int_{r=t}|\nabla r| d s$ and $\Delta \ln r \in L^{1}(E)$, then for some positive constant \mathbf{C},

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{r=t}|\nabla r| d s=\mathbf{C} \tag{2}
\end{equation*}
$$

Thus, $t \mapsto \int_{r=t}|\nabla r| d s$ grows at most linearly as $t \rightarrow \infty$. By the coarea formula, for t_{1} fixed and large,

$$
\begin{equation*}
\int_{\mathrm{E} \cap\left\{t_{1} \leq r \leq t\right\}}|\nabla r|^{2} d A=\int_{t_{1}}^{t}\left(\int_{r=\tau}|\nabla r| d s\right) d \tau \tag{3}
\end{equation*}
$$

So, $t \mapsto \int_{\mathrm{E} \cap\left\{t_{1} \leq r \leq t\right\}}|\nabla r|^{2} d A$ grows at most quadratically as $t \rightarrow \infty$. Since outside of a domain of finite area in $\mathbf{E},|\nabla r|$ is almost 1 , then the assertion follows.

