
Definition (parabolic, δ-parabolic)

(N, g) = n-dimensional Riemannian manifold, ∂N 6= Ø.

N is parabolic if every bounded harmonic function on
N is determined by its boundary values.

Given δ > 0, let N(δ) = {p ∈ N | dN(p, ∂N) ≥ δ},
where dN stands for the Riemannian distance. We say
that N is δ-parabolic if for all δ > 0, N(δ) is parabolic.

Definition (recurrent, transient)

(N, g) = n-dimensional Riemannian manifold, ∂N = Ø.

N is recurrent if for any non-empty open set U ⊂ N
(U 6= N) with smooth boundary, N−U is parabolic.

N is called transient if it is not recurrent.



Definition (harmonic measure µp)

Given a Riemannian surface (M, g) with ∂M 6= Ø and a point
p ∈ Int(M), define the harmonic measure µp with respect
to p as follows.

Let I ⊂ ∂M be a non-empty open set. Consider a
compact exhaustion M1 ⊂ M2 ⊂ . . . of M.

Given k ∈ N, hk : Mk → [0, 1] = the (bounded) harmonic
function on Mk with boundary values 1 on the interior of
I ∩Mk and 0 on ∂Mk − I. Extend hk by zero to M.

The functions hk limit to a unique bounded harmonic
function hI : M → [0, 1] (defined except at countably
many points in ∂I ⊂ ∂M).

Define
µp(I) = hI(p).

µp extends to a Borel measure µp on ∂M.



Also µp(I) = the probability of a Brownian path beginning at p, of hitting
∂M the first time somewhere on the interval I. So, the harmonic measure
of M is sometimes called the hitting measure with respect to p.
Question

How to computationally calculate the hitting measure µp at an interval I

contained in the boundary of a smooth domain Ω ⊂ R2, where
p ∈ Int(Ω)?

For n ∈ N and ε > 0, consider the set Γ(p, n, ε) of all n-step orthogonal
random ε-walks starting at p, i.e. continuous mappings σ : [0, nε] → R2

which begin at σ(0) = p and for any integer k = 0, . . . , n − 1,(
σ|[kε,(k+1)ε]

)
(t) = σ(kε)± tei ,

where ei is one of the unit vectors (1, 0), (0, 1).

Define µp(n, ε)(I) to be the probability that some σ ∈ Γ(p, n, ε)
crosses ∂Ω a first time in I.

As n →∞, µp(n, ε)(I) converges to a number µp(ε)(I) ∈ [0, 1].

As ε → 0, the measures µp(ε) converge to a measure µp on ∂M
equal to the hitting measure obtained from Brownian motion
starting at p.



FIGURE TO BE ADDED

Example

Consider the annular domain A ⊂ R2 in the figure above. Let
I ⊂ ∂A be on open interval in ∂A. Note that the function
PI : A− ∂I → [0, 1], defined by: PI(x) is the probability of
a Brownian path starting at x to exit A a first time on
I, satisfies the infinitesimal mean value property. Hence PI(x)
is a harmonic function on A− ∂I with boundary values 1 on
I and 0 on A− I.



The next proposition is straightforward to prove.

Proposition

(M, g) = Riemaniann manifold with ∂M 6= Ø. The following
are equivalent:

1 M is parabolic.
2 There exists a point p ∈ Int(M) such that the harmonic

measure µp is full, i.e.
∫

∂M
µp = 1.

3 Given any p ∈ Int(M) and any bounded harmonic
function f : M → R, then f (p) =

∫
∂M

f µp.
4 The universal covering of M is parabolic.

Furthermore, if there exists a proper, non-negative
superharmonic function on M, then M is parabolic. When M
is simply-connected and two-dimensional, then the existence of
such a function is equivalent to being parabolic.



Proposition (Liouville Theorem)

Every positive harmonic function on a recurrent Riemannian
manifold is constant.

Proof.

Let h : M → R be a non-constant, positive harmonic function
on a recurrent Riemannian manifold and t ∈ R = any positive
regular value of h. Then Mt = h−1((0, t]) = M− h−1((t,∞))
is parabolic and h|Mt is a bounded harmonic function with
constant boundary value t. Hence, h|Mt is constant and so h
is also constant. This contradicts that t is a regular value of
h. This contradiction completes the proof.



Corollary

The complex plane C is recurrent for Brownian motion and so,
bounded harmonic functions on C are constant.

Proof.

Let W(ε) = C− {z2 < ε} and p ∈ W(ε). It suffices to prove
that for any ε ∈ (0, 1), the harmonic measure µp of ∂W(ε) is
full. This holds since 1 + ln |z | − ln ε is a proper positive
harmonic function on W(ε).

Definition

Given a region W ⊂ R3, a function h : W → R is said to be
a universal superharmonic function on W if its restriction
to any minimal surface M ⊂ W is superharmonic.



Example (classical universal superharmonic functions)

Universal superharmonic functions on R3 include x1 or −x2
1 .

Collin, Kusner, Meeks and Rosenberg proved the following
useful inequality valid for any immersed minimal surface in R3:

|∆ ln r | ≤ |∇x3|2

r 2
in M− (x3-axis), (1)

where r =
√

x2
1 + x2

2 and ∇,∆ denote the intrinsic gradient
and laplacian on M. Using this estimate, a direct calculation
proves:

Lemma (Collin, Kusner, Meeks, Rosenberg)

i) ln r − x2
3 is a universal superharmonic function in

{r 2 ≥ 1
2
}.

ii) ln r − x3 arctan x3 + 1
2
ln(x2

3 + 1) is a universal
superharmonic function in {r 2 ≥ x2

3 + 1}.



Theorem (Collin, Kusner, Meeks, Rosenberg)

Let M be a connected, properly immersed minimal surface in R3, possibly
with boundary. Then, every component of the intersection of M with a
closed half-space is a parabolic surface.

Assertion

Any component C of M(+) = M ∩ {x3 ≥ 0} for fixed n ∈ N
Cn = C ∩ x−1

3 ([0, n]) is parabolic.

Proof.

Note h = ln r − x2
3 is universal superharmonic and proper in

Cn ∩ {r2 ≥ 1
2}. Furthermore, h is positive outside a compact domain of

Cn, which implies that Cn ∩ {r2 ≥ 1
2} is parabolic. Since M is proper and

{r2 ≤ 1
2} ∩ {0 ≤ x3 ≤ n} is compact, then Cn − {r2 > 1

2} is a compact
subset of Cn. Since parabolicity is not affected by adding compact
surface domains, Cn is parabolic.



Proof that C is parabolic.

Fix a point p ∈ C with x3(p) > 0 and let µC
p be the harmonic measure of

∂C with respect to p. Since x3 is a bounded harmonic function on the
parabolic surface Cn, for n large:

x3(p) =

∫
∂Cn

x3 µn
p ≥ n

∫
∂Cn∩x−1

3 (n)

µn
p,

where µn
p is the harmonic measure of Cn with respect to p. Since µn

p is
full on ∂Cn,∫

∂Cn−x−1
3 (n)

µn
p = 1−

∫
∂Cn∩x−1

3 (n)

µn
p ≥ 1− x3(p)

n

(n→∞)−→ 1.

Suppose now that M and N are Riemannian manifolds with M ⊂ N, ∂ is
a component of ∂M ∩ ∂N, p ∈ Int(M) with µM

p and µN
p = the harmonic

measures. The definition of harmonic measure implies∫
∂

µM
p ≤

∫
∂

µN
p ≤ 1. By letting M = Cn, N = C and ∂ = ∂Cn − x−1

3 (n),

the above inequality implies limn

∫
∂Cn−x−1

3 (n)
µC

p ≥ 1. Thus
∫

∂C µC
p = 1

and the proof is complete.



Corollary (Collin, Kusner, Meeks, Rosenberg)

Suppose M is a properly immersed minimal surface which
intersects some plane in a compact set. Then M is recurrent
for Brownian motion. In particular, M satisfies the Liouville
Conjecture below.

Conjecture (Liouville Conjecture, Meeks)

If M ∈ R3 is a properly embedded minimal surface and
h : M → R is a positive harmonic function, then h is constant.

Theorem (Collin, Kusner, Meeks, Rosenberg)

A properly embedded minimal surface M ⊂ R3 with two limit
ends intersects some plane in a compact set. Hence, such an
M is recurrent.



Conjecture (Multiple-End Recurrency Conjecture, Meeks)

If M ∈ R3 is a properly embedded minimal surface with more
than one end, then M is recurrent for Brownian motion.

Theorem (Meeks, Pérez, Ros)

Properly embedded minimal surfaces in R3 of genus 0 are
recurrent (in fact they are conformally equivalent to the
sphere S2 punctured in a closed countable set E with 2
limit points when E is an infinite set).

Properly embedded doubly periodic minimal surfaces of
finite topology in their quotient satisfy the Liouville
Conjecture but are never recurrent.



Example (Catenoids/planes in the complement of M)

M ⊂ R3 = a properly embedded minimal surface with more
than one end. Callahan, Hoffman and Meeks proved:

In one of the closed complements of M in R3, there exists
a non-compact, properly embedded minimal surface Σ
with compact boundary and finite total curvature.

The ends of Σ are of catenoidal or planar type, and the
embeddedness of Σ forces its ends to have parallel
normal vectors at infinity.

Definition

In the above situation, the limit tangent plane at infinity
of M is the plane in R3 passing through the origin, whose
normal vector equals (up to sign) the limiting normal
vector at the ends of Σ. Such a plane is unique (Callahan,
Hoffman, Meeks).



Theorem (Ordering Theorem, Frohman, Meeks)

Let M ⊂ R3 be a properly embedded minimal surface with
more than one end and horizontal limit tangent plane at
infinity. Then:

The space E(M) of ends of M is linearly ordered
geometrically by the relative heights of the ends over the
(x1, x2)-plane, and embeds topologically in [0, 1] in an
ordering preserving way.

This ordering satisfies: If M is properly isotopic to a
properly embedded minimal surface M′ with horizontal
limit tangent plane at infinity, then the associated
ordering of the ends of M′ either agrees with or is
opposite to the ordering coming from M.



Definition

For an M ⊂ R3 satisfying the hypotheses of the ordering
theorem:

The top end eT of M is the unique maximal element in
E(M) for the ordering given in this theorem (recall that
E(M) ⊂ [0, 1] is compact, hence eT exists).

The bottom end eB of M is the unique minimal element
in E(M).

If e ∈ E(M) is neither the top nor the bottom end of M,
then it is called a middle end of M.



Theorem (Collin, Kusner, Meeks, Rosenberg)

Let M ⊂ R3 be a properly embedded minimal surface with
more than one end and horizontal limit tangent plane at
infinity. Then:

Any limit end of M must be a top or bottom end of M.
In particular, M can have at most two limit ends, each
middle end is simple and the number of ends of M is
countable.

For each middle end e of M, there exists a positive
integer m(e) and an end representative E such that

lim
R→∞

Area(E ∩ B(R))

πR2
= m(e).

Furthermore, no end representative of e has smaller area
growth than E.

The parity of m(e) is called the parity of the middle end e.



Assertion

Suppose E ⊂ W = {(x1, x2, x3) | r ≥ 1, 0 ≤ x3 ≤ 1}, where
r =

√
x2
1 + x2

2 . Then

|∇x3|2, ∆ ln r ∈ L1(E).

Outside a subdomain of E of finite area, |∇x3| is almost equal to 1.

Proof.

Let f : E → R be the restricted proper superharmonic ln r − x2
3 to W.

Suppose f (∂E) ⊂ [−1, c] for some c > 0. Replace E by f −1[c ,∞) and
let E(t) = f −1[c , t] for t > c . Assuming that both c , t are regular values
of f , the Divergence Theorem gives∫

E(t)

∆f dA = −
∫

f−1(c)

|∇f | ds +

∫
f−1(t)

|∇f | ds.

Since f is superharmonic, the function t 7→
∫
E(t)

∆f dA is monotonically

decreasing and bounded from below by −
∫
f−1(c)

|∇f | ds. Thus ∆f lies in

L1(E). Furthermore, |∆f | = |∆ ln r − 2|∇x3|2| ≥ −|∆ ln r |+ 2|∇x3|2.
Since |∆ ln r | ≤ |∇x3|2

r2 , we have |∆f | ≥
(
2− 1

r2

)
|∇x3|2. Since r2 ≥ 1 in

W, then |∆f | ≥ |∇x3|2. Thus, both |∇x3|2 and ∆ ln r are in L1(E).



Assertion (quadratic area growth of E)

There exists a C > 0 such that:
∫
E∩{r≤t} dA = C

2 t2 + o(t2), where

t−2o(t2) → 0 as t →∞.

Proof.

Let r0 = max r |∂E. Redefine E(t) to be the subdomain of E that lies
inside the region {r2

0 ≤ x2
1 + x2

2 ≤ t2}. Since∫
E(t)

∆ ln r dA = −
∫

r=r0

|∇r |
r

ds+

∫
r=t

|∇r |
r

ds = const. +
1

t

∫
r=t

|∇r | ds

and ∆ ln r ∈ L1(E), then for some positive constant C,

lim
t→∞

1

t

∫
r=t

|∇r | ds = C. (2)

Thus, t 7→
∫
r=t

|∇r | ds grows at most linearly as t →∞. By the coarea
formula, for t1 fixed and large,∫

E∩{t1≤r≤t}
|∇r |2 dA =

∫ t

t1

(∫
r=τ

|∇r | ds

)
dτ. (3)

So, t 7→
∫
E∩{t1≤r≤t} |∇r |2 dA grows at most quadratically as t →∞.

Since outside of a domain of finite area in E, |∇r | is almost 1, then the
assertion follows.


