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Calabi-Yau problem

Existence of complete bounded minimal surfaces in R3
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Question (Yau 2000): Are there complete
embedded minimal surfaces in a ball of R3 ?

Theorem (Colding, Minicozzi 2004) A complete embedded
minimal surface with finite topology in R3 must be proper
(in R3.)

Theorem (Meeks, Pérez, Ros 2005) If M is a complete
embedded minimal surface in R3 with finite genus and a
countable number of ends, then M is proper.

Theorem (Meeks, Rosenberg 2005) If M is a complete
embedded minimal surface with injectivity radius IM > 0,
then M is proper.



Bounded embedded minimal surface conjecture
Conjecture (Mart́ın, Meeks, Nadirashvili; Meeks, Perez, Ros)

Let M be an open surface.

1. There exists a complete proper minimal embedding of M in
some smooth bounded domain D ⊂ R3 iff the number of
nonorientable ends is finite and every end of M has
infinite genus.

2. There exists a complete proper minimal embedding of M in
every smooth bounded domain D ⊂ R3 iff M is orientable
with every end having infinite genus.

Topological Obstruction Theorem (Ferrer, Mart́ın, Meeks)
If M is a nonorientable surface and has an infinite number of
nonorientable ends, then M cannot properly embed in any
smooth bounded domain of R3.



Recent existence results

� (Alarcón, Ferrer, Mart́ın)
Complete orientable minimal surfaces of finite topology and
hyperbolic type are dense in the space of all minimal surfaces
endowed with the topology of smooth convergence on
compact sets.

Remark
The above theorem also has been shown to hold in the
nonorientable setting by Ferrer, Mart́ın and Meeks.

� (Ferrer, Mart́ın, Meeks)
Let D be a domain which is convex (possibly D = R3) or
smooth and bounded. Given any open surface M , there exists
a complete proper minimal immersion f : M → D.



Nonexistence theorem

Theorem (Mart́ın, Meeks, Nadirashvili, 2005)
Given D a bounded domain of space,there exists a countable
family of horizontal simple closed curves {σn}n∈N, σn ⊂ D ∀n,
so that:

(i) D̃ = D \

(⋃
n∈N

σn

)
is a domain;

(ii) There are no complete proper minimal surfaces

with at least one annular end in D̃.



Proof. Let D a bounded domain and D its closure. We can
assume

D ⊂ {(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ 1}

and D contains points at heights 0 and 1. For t ∈ (0, 1)
denote:
� Pt ≡ horizontal plane x3 = t.

� Ct
def
= D ∩ Pt .

� {Ct,i}i∈It the connected components of Ct (It countable).
For each t and each i ∈ It , choose an exhaustion of Ct,i by
smooth compact domains Ct,i ,k , k ∈ N, and where:

I Ct,i ,k ⊂ Ct,i ,k+1, ∀k ∈ N,

I sup
x∈∂Ct,i,k

dist(x , ∂Ct,i) <
1

k
, ∀k ∈ N.

Finally, let

Ct(k)
def
=
⋃
i∈It

Ct,i ,k .





Now consider the following sequence of ordered rational
numbers:
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Let tk the k-th rational number in Q. Define F to be the
collection of boundary curves to all of the domains Ctk (k),
k ∈ N,and define

D̃
def
= D −F .

� D̃ is open and connected. � Suppose that f : M → D̃ is
a complete properly immersed minimal surface with an
annular end E and we will obtain a contradiction (!!).



Define:
L(E )

def
= f (E )− f (E ).

I L(E ) is closed and connected.

I L(E ) ⊂ ∂D̃ = D̃ − D̃ = ∂D ∪ F .

� x3|L(E) is constant.

•If L(E ) intersects one of the horizontal curves C in F , then
L(E ) ⊂ C (recall that L(E ) is connected) ⇒ x3|L(E) is
constant.

•Suppose that p ∈ L(E ) ⊂ ∂D. If x3|L(E) is not constant,⇒
∃ q ∈ L(E ) with x3(p) 6= x3(q). Choose a positive rational
number t which lies between x3(p) and x3(q). Notice t can be
represented by an infinite subsequence

{tk1 , tk2 , . . . , tkn , . . .} ⊂ Q

.



The plane Pt separates p and q, ⇒ for every subend
E ′ ⊂ E , Pt ∩ E ′ is nonempty.

The subdomains Ct(kn) give a compact exhaustion to Pt ∩ D
with boundaries disjoint from E . Therefore, every
component of Pt ∩ E is compact.

Pt ∩ E is noncompact, ⇒ there exist a pair of disjoint
simple closed curves in Pt ∩ E ⊂ E which bound a compact
domain U in E (since E is an annulus.)



The harmonic function x3|U has an interior maximum or

minimum which is impossible. This contradiction proves
that x3|L(E) is constant. Let a denote this constant. � If

x3|L(E) is constant, then the minimal immersion f : M → D̃ is
incomplete, which is contrary to our assumptions. The
annular end E is conformally equivalent to:

(1) D∗
= D− {0}, or

(2) A = {z ∈ C | r ≤ |z | < 1} ⊂ C, for some 0 < r < 1.

Case (1). As f is a bounded harmonic map, (1) ⇒ f
extends to the puncture ⇒ f is incomplete. Case (2).
Since x3 is a bounded harmonic function defined on A, then by
Fatou’s theorem x3 has radial limit a.e. in
S1 = {z ∈ C | |z | = 1}. Furthermore, the function x3 is
determined by the Poisson integral of its radial limits. Since
the limit ĺım

ρ→1
x3(ρθ) = a, at almost every point θ in S1, then x3

admits a regular extension to A. In particular, ‖∇x3‖ is
bounded.



As x2 is also a bounded harmonic function,then a result by J.
Bourgain asserts that the set

S =

{
θ ∈ S1 |

∫ 1

r

‖∇x2(ρ θ)‖ dρ < +∞
}

has Hausdorff dimension 1, in particular S is nonempty.

Moreover, for a conformal minimal immersion it is well known
that

‖∇x1‖ ≤ ‖∇x2‖+ ‖∇x3‖.

If θ is a point in S then∫ 1

r

√
‖∇x1(ρ θ)‖2 + ‖∇x2(ρ θ)‖2 + ‖∇x3(ρ θ)‖2 dρ < ∞,

which means that the divergent curve f (ρ θ), ρ ∈ (r , 1), has
finite length, ⇒ f is not complete. This contradiction
proves the theorem. �



General existence theorem

� (Ferrer, Mart́ın, Meeks)

Let D be a domain which is convex (possibly
D = R3) or smooth and bounded. Given any
open surface M, there exists a complete
proper minimal immersion f : M → D.



Density Theorem

Theorem (Alarcón, Ferrer, Mart́ın)

Properly immersed, orientable hyperbolic minimal
surfaces of finite topology are dense in the space of
all properly immersed orientable minimal surfaces in
R3, endowed with the topology of smooth
convergence on compact sets.



The Density Theorem is also true if we replace R3

by any convex domain D.

Theorem (Alarcón, Ferrer, Mart́ın)

Complete, hyperbolic orientable minimal surfaces
of finite topology properly immersed in D are dense
in the space of all properly immersed orientable
minimal surfaces in D, endowed with the topology of
smooth convergence on compact sets.

Consequence of density theorems

� There are complete proper minimal surfaces whose space
of ends is a Cantor set.



IMMERSED CASE vs EMBEDDED CASE

Immersed surfaces - Existence

There exist properly immersed minimal surfaces in R3 whose
space of ends is uncountable (a Cantor set.)

Embedded surfaces - Non-existence

Theorem (Collin, Kusner, Meeks, Rosenberg)

Let M ⊂ R3 be a properly embedded minimal surface
with more than one end and horizontal limit tangent
plane at infinity. Then, any limit end of M must be a
top or bottom end of M. In particular, M can have at
most two limit ends, each middle end is simple and
the number of ends of M is countable.



Construction of proper minimal surfaces
in R3 with uncountably many ends



A more general application of density theorem

Theorem (Alarcón, Ferrer, Mart́ın)

Any (topological) planar domain can be
properly and minimally immersed in R3.

Theorem (Meeks, Pérez, Ros)

The only properly embedded non-flat planar
domains in R3 are the catenoid, the helicoid
and Riemann’s minimal examples.



Classical examples:



General existence theorem

Theorem (Ferrer, Mart́ın, Meeks)

Let D be a domain which is convex (possibly
D = R3) or smooth and bounded. Given any
open surface M, there exists a complete
proper minimal immersion f : M → D.

Main tools

� Density theorem, including the new
nonorientable case.
� Existence of simple exhaustions.
� Bridge principle.



� Simple exhaustions.
Let M be a noncompact surface.

A smooth compact exhaustion

U = {M1 ⊂ M2 ⊂ · · · }
of M is called simple if:

1. M1 is a disk.
For all n ∈ N :

2. Each component of Mn+1 − Int(Mn) has one boundary
component in ∂Mn and at least one boundary
component in ∂Mn+1.

3. Mn+1 − Int(Mn) contains a unique nonannular
component which topologically is a pair of pants or an
annulus with a handle.

If M has finite topology with genus g and k ends, then we call
the compact exhaustion simple if properties 1 and 2 hold,
property 3 holds for n ≤ g + k , and when n > g + k , all of the
components of Mn+1 − Int(Mn) are annular.



� Simple exhaustions.

Lemma 1
Every orientable open surface admits a
simple exhaustion.



� Bridge principle.

Let M be a nondegenerate minimal surface in R3,
and let P ⊂ R3 be a thin curved rectangle whose
two short sides lie along ∂M and that is otherwise
disjoint from M. The bridge principle for minimal

surfaces states that it should be possible to deform
M ∪ P slightly to make a minimal surface with
boundary ∂(M ∪ P).





Proof of the theorem in the convex case.
Let D be a general convex domain (not necessarily
bounded or smooth). Consider {Dn, n ∈ N} a
smooth exhaustion of D, where Dn is bounded and
strictly convex, for all n. The existence of such a
exhaustion is guaranteed by a classical result of
Minkowski. Let M be an open surface and

M = {M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · · }
a simple exhaustion of M. Our purpose is to

construct a sequence of minimal surfaces with
nonempty boundary

{Σn}n∈N

satisfying:



(1n). ~0 ∈ Σn and ∂Σn ⊂ ∂Dn;

(2n). distΣn
(~0, ∂Σn) ≥ distΣn−1

(~0, ∂Σn−1) + 1;

(3n). Σn ∩ Dn−1 ≈ Σn−1 (in order to have a good
limit of {Σn}n∈N.)

(4n). Σn ∩ Di is homeomorphic to Mi , for
i = 1, . . . , n.

The sequence {Σn}n∈N reproduces the topological
model of the simple exhaustion
M = {M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · · }



� Adding handles. Consider the surface Σn. We
want to add an annulus with a handle in a
component of its boundary.

� D′ is a convex domain satisfying
Dn ⊂ D′ ⊂ D′ ⊂ Dn+1.

� Σ′ is complete and proper in D′.
Take U ⊂ Σ′ such that
distU(~0, ∂U) ≥ distΣn

(~0, ∂Σn) + 1.



We use the bridge principle to add a minimal disk
with a handle near the boundary of U.



Finally, we consider a convex domain D′′ with
Dn+1 ⊂ D′′ and we apply the density theorem to
obtain Σ′′.

Σn+1 ⊆ Σ′′ ∩ Dn+1.



� Adding handles.



� Adding pair of pants.



� Smooth bounded domains

� Theorem (Ferrer, Mart́ın, Meeks)

If D is a smooth bounded domain in R3 and
M is an open surface, then there exists a
complete, proper minimal immersion of M in
D such that the limit sets of distinct ends
of M are disjoint.

� The proof of this result is the first key point in
my approach with Mart́ın and Nadirashvili to solving
the embedded Calabi-Yau conjecture, including
the nonorientable case.


