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Abstract

In this paper we prove a compactness theorem for the space of complete embedded
minimal surfaces with a given bound on its quadratic curvature decay constant C.
This compactness theorem depends upon the key result in our previous paper [1] that
a complete embedded minimal surface in R3 with quadratic decay of curvature has
finite total curvature as well as some other results from [1].
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1 Introduction.

A complete Riemannian surface M is said to have intrinsic quadratic curvature decay
constant C > 0 with respect to a point p ∈ M , if the absolute curvature function |KM | of
M satisfies

|KM(q)| ≤ C

dM(p, q)2
,

for all q ∈ M , where dM denotes the Riemannian distance function. Note that if such
a Riemannian surface M is a complete surface in R3 with p = ~0 ∈ M , then it also
has extrinsic quadratic decay constant C with respect to the radial distance R to ~0, i.e.
|KM |R2 ≤ C on M . For this reason, when we say that a minimal surface in R3 has
quadratic decay of curvature, we will always refer to curvature decay with respect to the
extrinsic distance R to ~0, independently of whether or not M passes through ~0.
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findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the NSF.
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In this article we will need the following characterization of complete embedded mini-
mal surfaces of quadratic curvature decay from [1].

Theorem 1.1 (Quadratic Curvature Decay Theorem) A complete embedded mini-
mal surface in R3 with compact boundary (possibly empty) has quadratic decay of curvature
if and only if it has finite total curvature. In particular, a complete connected embedded
minimal surface M ⊂ R3 with compact boundary and quadratic decay of curvature is prop-
erly embedded in R3. Furthermore, if C is the maximum of the logarithmic growths of the
ends of M , then

lim
R→∞

sup
M−B(R)

|KM |R4 = C2,

where B(R) denotes the extrinsic ball of radius R centered at ~0.

Theorem 1.1 and the techniques used in its proof give rise to the following compactness
result. This compactness theorem is the main result of this article.

Given r > 0, we let S2(r) denote the sphere of radius r centered at the origin.

Theorem 1.2 For C > 0, let FC be the family of all complete embedded connected min-
imal surfaces M ⊂ R3 with quadratic curvature decay constant C, normalized so that the
maximum of the function |KM |R2 occurs at a point of M ∩ S2(1). Then,

1. If C < 1, then FC consists only of flat planes.

2. F1 consists of planes and catenoids whose waist circle is a great circle in S2(1).

3. For C fixed, there is a uniform bound on the topology and on the curvature of all
the examples in FC. Furthermore, given any sequence of examples in FC of fixed
topology, a subsequence converges uniformly on compact subsets of R3 to another
example in FC with the same topology as the surfaces in the sequence. In particular,
FC is compact in the topology of uniform Ck-convergence on compact subsets.

2 The moduli space FC.

Lemma 2.1 Let M ⊂ R3 be a complete embedded connected minimal surface. If |KM |R2 ≤
C < 1 on M , then M is a plane.

Proof. By Theorem 1.1, M has finite total curvature. Consider the function f = R2

on M . Its critical points occur at those p ∈ M where M is tangent to S2(|p|). The
hessian ∇2f at such a critical point p is (∇2f)p(v, v) = 2

(
|v|2 − σp(v, v)〈p, N〉

)
, v ∈ TpM ,

where σ is the second fundamental form of M and N its Gauss map. Taking |v| = 1, we
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Figure 1: The function |K|R2 of Lemma 2.2 attains its maximum at z = 0, with value 1.

have σp(v, v) ≤ |σp(ei, ei)| =
√
|KM |(p), where e1, e2 is an orthonormal basis of principal

directions at p. Since 〈p, N〉 ≤ |p|, we have

(∇2f)p(v, v) ≥ 2
[
1− (|KM |R2)1/2

]
≥ 2(1 −

√
C) > 0. (1)

Hence, all critical points of f are nondegenerate local minima on M . In particular, f is
a Morse function on M . Since M is connected, f has at most one critical point on M ,
which is its global minimum. Since M is complete with finite total curvature, then M is
proper. Hence, f attains its global minimum a ≥ 0 on at least one point p ∈ M . By Morse
Theory, M ∩ B(a + 1) is a compact disk and M − B(a + 1) is an annulus with compact
boundary, which implies M is topologically a plane. Since M is simply connected and has
finite total curvature, then M is a plane. 2

The next lemma, whose proof is straightforward, implies that the standard catenoid
has C = 1; see Figure 2.

Lemma 2.2 For the catenoid {cosh2 z = x2 + y2}, we have |K|R2 = 1
cosh2 z

(
1 + z2

cosh2 z

)
.

A natural limit object for sequences of complete embedded minimal surfaces with a given
constant of quadratic curvature decay is a minimal lamination L whose leaves satisfy the
same curvature estimate. In consideration of this fact, we make the following definition.

Definition 2.3 The curvature function of a lamination L will be denoted by KL:L → R.
L is said to have quadratic decay of curvature if |KL|R2 ≤ C on L for a number C > 0.

A family F of properly embedded minimal surfaces in R3 is called compact under
homotheties, if for each sequence {Mn}n ⊂ F , there exists a sequence {λn}n ⊂ R+ such
that {λnMn}n converges strongly to a properly embedded minimal surface M ⊂ R3 (i.e.
without loss of total curvature or topology). We note that the family FC in the statement
below is not normalized in the same way as the similarly defined set in the statement of
Theorem 1.2 in the introduction.
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Lemma 2.4 Given C > 0, the family FC of all connected embedded minimal surfaces
M ⊂ R3 of finite total curvature such that |KM |R2 ≤ C, is compact under homotheties.

Proof. Let {Mn}n ⊂ FC be a sequence of non-flat examples. Since Mn has finite total
curvature for all n, then for each n fixed, |KMn |R2 → 0 as R → ∞. Therefore, we can
choose a point pn ∈ Mn where |KMn |R2 has a maximum value Cn ≤ C. Note that Cn ≥ 1
(otherwise Mn is a plane by Lemma 2.1) for all n. Hence, {M̃n = 1

|pn|Mn}n is a new

sequence in FC , with bounded curvature outside ~0 and with points on S2(1), where |K
M̃n

|
takes the value Cn. After choosing a subsequence, M̃n converges to a non-flat minimal
lamination L of R3 −{~0} with |KL|R2 ≤ C (here KL stands for the curvature function on
L). By Corollary 6.3 in [1], L consists of a single leaf which extends to a non-flat properly
embedded minimal surface L ⊂ R3 of finite total curvature. Then L ∈ FC , and if the
M̃n converge strongly to L (i.e. without loss of total curvature), then the lemma will be
proved.

For any M ∈ FC and R > 0, let

C(M, R) =
∫

M∩B(R)
|KM |dA and C(M) = lim

R→∞
C(M, R).

Take R1 > 0 large but fixed so that M̃n ∩ B(R1) is extremely close to L ∩ B(R1) and
C(M̃n, R1), C(L, R1) are extremely close to C(L).

Assume from now on that C(Mn) > C(L) for n sufficiently large and will derive a
contradiction. First we show that there exist points qn ∈ M̃n such that |qn| ↗ ∞ and
(|K

M̃n
|R2)(qn) ≥ 1 for all n. Otherwise, there exists an R1 > 0 such that for all n, the

surface M̃n − B(R1) satisfies |K|R2 < 1. By the proof of Lemma 2.1, each component
of M̃n − B(R1) is an annulus (f = R2 has no critical points on the component), and so
is a planar or catenoidal end. Hence, for all ε > 0, there exists an R2(ε) ≥ R1 such
that |C(M̃n, R2(ε)) − C(L)| < ε, and so, {M̃n}n converges strongly to L, which is a
contradiction.

Let M̂n = 1
|qn|M̃n. By the same argument as before, a subsequence of {M̂n}n converges

to a non-flat properly embedded minimal surface L′ ⊂ R3 with finite total curvature.
Furthermore, the balls B( R1

|qn|) collapse into ~0. In particular, ~0 ∈ L′. Take r > 0 small
enough so that L′ ∩ B(r) is a graph over a convex domain Ω in the tangent plane T~0L

′.
Take n large enough so that R1

|qn| is much smaller than r. Since the M̂n converge to L′ with

multiplicity one, for all n large, M̂n ∩ S2(r) is a graph over the planar convex curve ∂Ω.
Furthermore, M̂n ∩B(r) is compact, and so, the maximum principle implies M̂n ∩B(r) lies
in the convex hull of its boundary. Therefore, M̂n∩B(r) must be a graph over its projection
to the tangent plane T~0L

′, which contradicts that M̂n ∩ B( R1
|qn|) has the appearance of an

4



almost complete embedded finite total curvature minimal surface with more than one end.
This contradiction finishes the proof. 2

Proposition 2.5 Let M ⊂ R3 be a connected properly embedded minimal surface. If
|KM |R2 ≤ 1 on M , then M is either a plane or a catenoid centered at ~0.

Proof. Let ∇ denote the Levi-Civita connection of M1, σ its second fundamental form and
N its unit normal or Gauss map. Let f = R2 on M . First we will check that the hessian
∇2f is positive semidefinite on M . Let γ ⊂ M be a unit geodesic. Then (f ◦γ)′ = 2〈γ, γ ′〉
and

(∇2f)γ(γ ′, γ ′) = 〈∇γ′∇f, γ ′〉 = γ ′(〈∇f, γ ′〉) = (f ◦ γ)′′ = 2(|γ ′|2 + 〈γ, γ ′′〉)

= 2(1 + 〈γ,∇γ′γ ′ + σ(γ ′, γ ′)N〉) = 2(1 + σ(γ ′, γ ′)〈γ, N〉)≥ 2(1− |σ(γ ′, γ ′)||〈γ, N〉)|)
(A)

≥ 2(1−
√
|KM ||〈γ, N〉)|)

(B)

≥ 2(1 −
√
|KM ||γ|) ≥ 0,

where equality in (A) implies that γ ′ is a principal direction at γ and equality in (B)
implies that M is tangential to the sphere S2(|γ|) at γ.

Let p ∈ M such that (∇2f)p has nullity. We claim that

• This nullity is generated by a principal direction v at p, and (∇2f)p(w, w) ≥ 0 for
all w ∈ TpM with equality only if w is parallel to v.

• M and S2(|p|) are tangent at p (i.e. p is a critical point of f).

• (|KM |R2)(p) = 1.

Everything is proved except the second statement of the first point. Let α = α(s) be
the unit geodesic of M with α(0) = p and w = α̇(0) ⊥ v. Then (∇2f)p(w, w) = 2(1 +
σ(w, w)〈p, N〉) = 2(1 − σ(v, v)〈p,N〉) = 2(1− (−1)) = 4 > 0. Now the statement follows
from the bilinearity of (∇2f)p.

Let Σ = {critical points of f}. We claim that if γ: [0, 1] → M is a geodesic with
γ(0), γ(1) ∈ Σ, then f ◦γ = constant. To see this, first note that (f ◦γ)′′ = (∇2f)γ(γ ′, γ ′) ≥
0, and thus, (f ◦ γ)′ is not decreasing. As γ(0), γ(1) ∈ Σ, then (f ◦ γ)′ vanishes at 0 and
1, and so, (f ◦ γ)′ = 0 in [0, 1], which gives our claim.

Next we will show that Σ coincides with the set of global minima of f . Let p ∈ Σ and
let p0 ∈ M be a global minimum of f (note that p0 exists and we can assume p 6= p0).
Let γ be a geodesic joining p to p0. By the claim in the last paragraph, any point of γ is
a global minimum of f ; so in particular, p is a global minimum.

Assume now that Σ consists of one point, and we will prove that M is a plane. The
function f has only one critical point p, which is its global minimum. If Nullity(∇2f)p =
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{0}, then f is a Morse function. By Morse theory, M is topologically a disk. Since M has
finite total curvature by Theorem 1.1, then M is a plane. Now assume Nullity(∇2f)p 6=
{0}. Thus, (∇2f)p(w, w) ≥ 0 for all w ∈ TpM with equality only for one of the principal
directions at p. Therefore, a neighborhood of p is a disk D contained in R3 − B(f(p)).
Again Morse Theory implies that M − D is an annulus, and so, M is a plane.

Finally, suppose Σ has more that one point, and we will prove that M is a catenoid.
Take p0, p1 ∈ Σ. Let γ: [0, 1]→ M a geodesic with γ(0) = p0, γ(1) = p1. By the arguments
above, γ ⊂ Σ is made entirely of global minima of f . Let a = f(γ) ∈ [0,∞). If a = 0,
then M passes through ~0, and so, f has only one global minimum, which in turn implies
that Σ has only one point, which is impossible. Hence, a > 0 and γ ⊂ S2(a). Since
(∇2f)γ(γ ′, γ ′) = (f ◦ γ)′′ = 0, (∇2f)γ has nullity. Since γ is geodesic of M ,

γ ′′ = σ(γ ′, γ ′)N
(C)
= σ1(γ ′, γ ′)

γ

a
,

where σ1 stands for the second fundamental form of S2(a) and in (C) we have used that
the normal vector N to M at γ is parallel to γ and that (|KM |R2) ◦ γ = 1. Hence, γ
is a geodesic in S2(a), i.e. an arc of a great circle. By analyticity and since M has no
boundary, the whole great circle Γ that contains γ is contained in M (and Γ is entirely
made of global minima of f). By the above arguments, M is tangent to S2(a) along Γ.
Note that the catenoid C with waist circle Γ also matches the same Cauchy data. By
uniqueness of this boundary value problem, M = C. 2

Remark 2.6 There exists an ε > 0 such that if a properly embedded minimal surface
M ⊂ R3 satisfies |KM |R2 ≤ 1 + ε, then M is a plane or a catenoid.
Proof: Otherwise, for all n, there exists an Mn ∈ F1+ 1

n
which is never a catenoid. Since

{Mn}n ⊂ F2, Lemma 2.4 implies we can find λn > 0 such that {λnMn}n converges to
a non-flat properly embedded minimal surface M ∈ F2. In fact, since λnMn ∈ F1+ 1

n

we have M ∈ F1, and so, Corollary 2.5 implies M is a catenoid centered at ~0. Since
the λnMn converge strongly to M , they must also be catenoids, which gives the desired
contradiction.

The statements in Theorem 1.2 follow directly from Lemmas 2.1, 2.4 and from Propo-
sition 2.5.
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