The space of embedded minimal surfaces of quadratic curvature decay

William H. Meeks III* Joaquín Pérez Antonio Ros;

November 23, 2005

Abstract

In this paper we prove a compactness theorem for the space of complete embedded minimal surfaces with a given bound on its quadratic curvature decay constant C. This compactness theorem depends upon the key result in our previous paper [1] that a complete embedded minimal surface in \mathbb{R}^3 with quadratic decay of curvature has finite total curvature as well as some other results from [1].

Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42 Key words and phrases: Minimal surface, stability, curvature estimates, finite total curvature, minimal lamination, removable singularity, limit tangent cone.

1 Introduction.

A complete Riemannian surface M is said to have intrinsic quadratic curvature decay constant C > 0 with respect to a point $p \in M$, if the absolute curvature function $|K_M|$ of M satisfies

$$|K_M(q)| \le \frac{C}{d_M(p,q)^2},$$

for all $q \in M$, where d_M denotes the Riemannian distance function. Note that if such a Riemannian surface M is a complete surface in \mathbb{R}^3 with $p = \vec{0} \in M$, then it also has extrinsic quadratic decay constant C with respect to the radial distance R to $\vec{0}$, i.e. $|K_M|R^2 \leq C$ on M. For this reason, when we say that a minimal surface in \mathbb{R}^3 has quadratic decay of curvature, we will always refer to curvature decay with respect to the extrinsic distance R to $\vec{0}$, independently of whether or not M passes through $\vec{0}$.

^{*}This material is based upon work for the NSF under Award No. DMS - 0405836. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF.

[†]Research partially supported by a MEC/FEDER grant no. MTM2004-02746.

In this article we will need the following characterization of complete embedded minimal surfaces of quadratic curvature decay from [1].

Theorem 1.1 (Quadratic Curvature Decay Theorem) A complete embedded minimal surface in \mathbb{R}^3 with compact boundary (possibly empty) has quadratic decay of curvature if and only if it has finite total curvature. In particular, a complete connected embedded minimal surface $M \subset \mathbb{R}^3$ with compact boundary and quadratic decay of curvature is properly embedded in \mathbb{R}^3 . Furthermore, if C is the maximum of the logarithmic growths of the ends of M, then

$$\lim_{R \to \infty} \sup_{M - \mathbb{B}(R)} |K_M| R^4 = C^2,$$

where $\mathbb{B}(R)$ denotes the extrinsic ball of radius R centered at $\vec{0}$.

Theorem 1.1 and the techniques used in its proof give rise to the following compactness result. This compactness theorem is the main result of this article.

Given r > 0, we let $\mathbb{S}^2(r)$ denote the sphere of radius r centered at the origin.

Theorem 1.2 For C > 0, let \mathcal{F}_C be the family of all complete embedded connected minimal surfaces $M \subset \mathbb{R}^3$ with quadratic curvature decay constant C, normalized so that the maximum of the function $|K_M|R^2$ occurs at a point of $M \cap \mathbb{S}^2(1)$. Then,

- 1. If C < 1, then \mathcal{F}_C consists only of flat planes.
- 2. \mathcal{F}_1 consists of planes and catenoids whose waist circle is a great circle in $\mathbb{S}^2(1)$.
- 3. For C fixed, there is a uniform bound on the topology and on the curvature of all the examples in \mathcal{F}_C . Furthermore, given any sequence of examples in \mathcal{F}_C of fixed topology, a subsequence converges uniformly on compact subsets of \mathbb{R}^3 to another example in \mathcal{F}_C with the same topology as the surfaces in the sequence. In particular, \mathcal{F}_C is compact in the topology of uniform C^k -convergence on compact subsets.

2 The moduli space \mathcal{F}_C .

Lemma 2.1 Let $M \subset \mathbb{R}^3$ be a complete embedded connected minimal surface. If $|K_M|R^2 \leq C < 1$ on M, then M is a plane.

Proof. By Theorem 1.1, M has finite total curvature. Consider the function $f = R^2$ on M. Its critical points occur at those $p \in M$ where M is tangent to $\mathbb{S}^2(|p|)$. The hessian $\nabla^2 f$ at such a critical point p is $(\nabla^2 f)_p(v,v) = 2(|v|^2 - \sigma_p(v,v)\langle p,N\rangle), v \in T_pM$, where σ is the second fundamental form of M and N its Gauss map. Taking |v| = 1, we

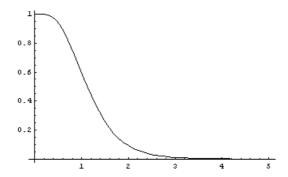


Figure 1: The function $|K|R^2$ of Lemma 2.2 attains its maximum at z=0, with value 1.

have $\sigma_p(v,v) \leq |\sigma_p(e_i,e_i)| = \sqrt{|K_M|}(p)$, where e_1,e_2 is an orthonormal basis of principal directions at p. Since $\langle p,N\rangle \leq |p|$, we have

$$(\nabla^2 f)_p(v,v) \ge 2\left[1 - (|K_M|R^2)^{1/2}\right] \ge 2(1 - \sqrt{C}) > 0. \tag{1}$$

Hence, all critical points of f are nondegenerate local minima on M. In particular, f is a Morse function on M. Since M is connected, f has at most one critical point on M, which is its global minimum. Since M is complete with finite total curvature, then M is proper. Hence, f attains its global minimum $a \ge 0$ on at least one point $p \in M$. By Morse Theory, $M \cap \overline{\mathbb{B}}(a+1)$ is a compact disk and $M - \mathbb{B}(a+1)$ is an annulus with compact boundary, which implies M is topologically a plane. Since M is simply connected and has finite total curvature, then M is a plane.

The next lemma, whose proof is straightforward, implies that the standard catenoid has C=1; see Figure 2.

Lemma 2.2 For the catenoid
$$\{\cosh^2 z = x^2 + y^2\}$$
, we have $|K|R^2 = \frac{1}{\cosh^2 z} \left(1 + \frac{z^2}{\cosh^2 z}\right)$.

A natural limit object for sequences of complete embedded minimal surfaces with a given constant of quadratic curvature decay is a minimal lamination \mathcal{L} whose leaves satisfy the same curvature estimate. In consideration of this fact, we make the following definition.

Definition 2.3 The curvature function of a lamination \mathcal{L} will be denoted by $K_{\mathcal{L}}: \mathcal{L} \to \mathbb{R}$. \mathcal{L} is said to have *quadratic decay of curvature* if $|K_{\mathcal{L}}|R^2 \leq C$ on \mathcal{L} for a number C > 0.

A family \mathcal{F} of properly embedded minimal surfaces in \mathbb{R}^3 is called *compact under homotheties*, if for each sequence $\{M_n\}_n \subset \mathcal{F}$, there exists a sequence $\{\lambda_n\}_n \subset \mathbb{R}^+$ such that $\{\lambda_n M_n\}_n$ converges strongly to a properly embedded minimal surface $M \subset \mathbb{R}^3$ (i.e. without loss of total curvature or topology). We note that the family \mathcal{F}_C in the statement below is not normalized in the same way as the similarly defined set in the statement of Theorem 1.2 in the introduction.

Lemma 2.4 Given C > 0, the family \mathcal{F}_C of all connected embedded minimal surfaces $M \subset \mathbb{R}^3$ of finite total curvature such that $|K_M|R^2 \leq C$, is compact under homotheties.

Proof. Let $\{M_n\}_n \subset \mathcal{F}_C$ be a sequence of non-flat examples. Since M_n has finite total curvature for all n, then for each n fixed, $|K_{M_n}|R^2 \to 0$ as $R \to \infty$. Therefore, we can choose a point $p_n \in M_n$ where $|K_{M_n}|R^2$ has a maximum value $C_n \leq C$. Note that $C_n \geq 1$ (otherwise M_n is a plane by Lemma 2.1) for all n. Hence, $\{\widetilde{M}_n = \frac{1}{|p_n|}M_n\}_n$ is a new sequence in \mathcal{F}_C , with bounded curvature outside $\vec{0}$ and with points on $\mathbb{S}^2(1)$, where $|K_{\widetilde{M}_n}|$ takes the value C_n . After choosing a subsequence, \widetilde{M}_n converges to a non-flat minimal lamination \mathcal{L} of $\mathbb{R}^3 - \{\vec{0}\}$ with $|K_{\mathcal{L}}|R^2 \leq C$ (here $K_{\mathcal{L}}$ stands for the curvature function on \mathcal{L}). By Corollary 6.3 in [1], \mathcal{L} consists of a single leaf which extends to a non-flat properly embedded minimal surface $L \subset \mathbb{R}^3$ of finite total curvature. Then $L \in \mathcal{F}_C$, and if the \widetilde{M}_n converge strongly to L (i.e. without loss of total curvature), then the lemma will be proved.

For any $M \in \mathcal{F}_C$ and R > 0, let

$$C(M,R) = \int_{M \cap \mathbb{B}(R)} |K_M| dA$$
 and $C(M) = \lim_{R \to \infty} C(M,R)$.

Take $R_1 > 0$ large but fixed so that $\widetilde{M}_n \cap \mathbb{B}(R_1)$ is extremely close to $L \cap \mathbb{B}(R_1)$ and $C(\widetilde{M}_n, R_1), C(L, R_1)$ are extremely close to C(L).

Assume from now on that $C(M_n) > C(L)$ for n sufficiently large and will derive a contradiction. First we show that there exist points $q_n \in \widetilde{M}_n$ such that $|q_n| \nearrow \infty$ and $(|K_{\widetilde{M}_n}|R^2)(q_n) \ge 1$ for all n. Otherwise, there exists an $R_1 > 0$ such that for all n, the surface $\widetilde{M}_n - \mathbb{B}(R_1)$ satisfies $|K|R^2 < 1$. By the proof of Lemma 2.1, each component of $\widetilde{M}_n - \mathbb{B}(R_1)$ is an annulus $(f = R^2$ has no critical points on the component), and so is a planar or catenoidal end. Hence, for all $\varepsilon > 0$, there exists an $R_2(\varepsilon) \ge R_1$ such that $|C(\widetilde{M}_n, R_2(\varepsilon)) - C(L)| < \varepsilon$, and so, $\{\widetilde{M}_n\}_n$ converges strongly to L, which is a contradiction.

Let $\widehat{M}_n = \frac{1}{|q_n|} \widehat{M}_n$. By the same argument as before, a subsequence of $\{\widehat{M}_n\}_n$ converges to a non-flat properly embedded minimal surface $L' \subset \mathbb{R}^3$ with finite total curvature. Furthermore, the balls $\mathbb{B}(\frac{R_1}{|q_n|})$ collapse into $\vec{0}$. In particular, $\vec{0} \in L'$. Take r > 0 small enough so that $L' \cap \mathbb{B}(r)$ is a graph over a convex domain Ω in the tangent plane $T_{\vec{0}}L'$. Take n large enough so that $\frac{R_1}{|q_n|}$ is much smaller than r. Since the \widehat{M}_n converge to L' with multiplicity one, for all n large, $\widehat{M}_n \cap \mathbb{S}^2(r)$ is a graph over the planar convex curve $\partial \Omega$. Furthermore, $\widehat{M}_n \cap \mathbb{B}(r)$ is compact, and so, the maximum principle implies $\widehat{M}_n \cap \mathbb{B}(r)$ lies in the convex hull of its boundary. Therefore, $\widehat{M}_n \cap \mathbb{B}(r)$ must be a graph over its projection to the tangent plane $T_{\vec{0}}L'$, which contradicts that $\widehat{M}_n \cap \mathbb{B}(\frac{R_1}{|q_n|})$ has the appearance of an

almost complete embedded finite total curvature minimal surface with more than one end. This contradiction finishes the proof.

Proposition 2.5 Let $M \subset \mathbb{R}^3$ be a connected properly embedded minimal surface. If $|K_M|R^2 \leq 1$ on M, then M is either a plane or a catenoid centered at $\vec{0}$.

Proof. Let ∇ denote the Levi-Civita connection of M_1 , σ its second fundamental form and N its unit normal or Gauss map. Let $f = R^2$ on M. First we will check that the hessian $\nabla^2 f$ is positive semidefinite on M. Let $\gamma \subset M$ be a unit geodesic. Then $(f \circ \gamma)' = 2\langle \gamma, \gamma' \rangle$ and

$$(\nabla^{2} f)_{\gamma}(\gamma', \gamma') = \langle \nabla_{\gamma'} \nabla f, \gamma' \rangle = \gamma'(\langle \nabla f, \gamma' \rangle) = (f \circ \gamma)'' = 2(|\gamma'|^{2} + \langle \gamma, \gamma'' \rangle)$$

$$= 2(1 + \langle \gamma, \nabla_{\gamma'} \gamma' + \sigma(\gamma', \gamma') N \rangle) = 2(1 + \sigma(\gamma', \gamma') \langle \gamma, N \rangle) \ge 2(1 - |\sigma(\gamma', \gamma')| |\langle \gamma, N \rangle)|)$$

$$\stackrel{(A)}{\ge} 2(1 - \sqrt{|K_{M}|} |\langle \gamma, N \rangle)|) \stackrel{(B)}{\ge} 2(1 - \sqrt{|K_{M}|} |\gamma|) \ge 0,$$

where equality in (A) implies that γ' is a principal direction at γ and equality in (B) implies that M is tangential to the sphere $\mathbb{S}^2(|\gamma|)$ at γ .

Let $p \in M$ such that $(\nabla^2 f)_p$ has nullity. We claim that

- This nullity is generated by a principal direction v at p, and $(\nabla^2 f)_p(w, w) \geq 0$ for all $w \in T_pM$ with equality only if w is parallel to v.
- M and $\mathbb{S}^2(|p|)$ are tangent at p (i.e. p is a critical point of f).
- $(|K_M|R^2)(p) = 1$.

Everything is proved except the second statement of the first point. Let $\alpha = \alpha(s)$ be the unit geodesic of M with $\alpha(0) = p$ and $w = \dot{\alpha}(0) \perp v$. Then $(\nabla^2 f)_p(w, w) = 2(1 + \sigma(w, w)\langle p, N \rangle) = 2(1 - \sigma(v, v)\langle p, N \rangle) = 2(1 - (-1)) = 4 > 0$. Now the statement follows from the bilinearity of $(\nabla^2 f)_p$.

Let $\Sigma = \{\text{critical points of } f\}$. We claim that if $\gamma: [0,1] \to M$ is a geodesic with $\gamma(0), \gamma(1) \in \Sigma$, then $f \circ \gamma = \text{constant}$. To see this, first note that $(f \circ \gamma)'' = (\nabla^2 f)_{\gamma}(\gamma', \gamma') \geq 0$, and thus, $(f \circ \gamma)'$ is not decreasing. As $\gamma(0), \gamma(1) \in \Sigma$, then $(f \circ \gamma)'$ vanishes at 0 and 1, and so, $(f \circ \gamma)' = 0$ in [0,1], which gives our claim.

Next we will show that Σ coincides with the set of global minima of f. Let $p \in \Sigma$ and let $p_0 \in M$ be a global minimum of f (note that p_0 exists and we can assume $p \neq p_0$). Let γ be a geodesic joining p to p_0 . By the claim in the last paragraph, any point of γ is a global minimum of f; so in particular, p is a global minimum.

Assume now that Σ consists of one point, and we will prove that M is a plane. The function f has only one critical point p, which is its global minimum. If Nullity $(\nabla^2 f)_p =$

 $\{0\}$, then f is a Morse function. By Morse theory, M is topologically a disk. Since M has finite total curvature by Theorem 1.1, then M is a plane. Now assume $\operatorname{Nullity}(\nabla^2 f)_p \neq \{0\}$. Thus, $(\nabla^2 f)_p(w,w) \geq 0$ for all $w \in T_pM$ with equality only for one of the principal directions at p. Therefore, a neighborhood of p is a disk D contained in $\mathbb{R}^3 - \overline{\mathbb{B}}(f(p))$. Again Morse Theory implies that M - D is an annulus, and so, M is a plane.

Finally, suppose Σ has more that one point, and we will prove that M is a catenoid. Take $p_0, p_1 \in \Sigma$. Let $\gamma \colon [0,1] \to M$ a geodesic with $\gamma(0) = p_0, \gamma(1) = p_1$. By the arguments above, $\gamma \subset \Sigma$ is made entirely of global minima of f. Let $a = f(\gamma) \in [0, \infty)$. If a = 0, then M passes through $\vec{0}$, and so, f has only one global minimum, which in turn implies that Σ has only one point, which is impossible. Hence, a > 0 and $\gamma \subset \mathbb{S}^2(a)$. Since $(\nabla^2 f)_{\gamma}(\gamma', \gamma') = (f \circ \gamma)'' = 0$, $(\nabla^2 f)_{\gamma}$ has nullity. Since γ is geodesic of M,

$$\gamma'' = \sigma(\gamma', \gamma') N \stackrel{(C)}{=} \sigma_1(\gamma', \gamma') \frac{\gamma}{a},$$

where σ_1 stands for the second fundamental form of $\mathbb{S}^2(a)$ and in (C) we have used that the normal vector N to M at γ is parallel to γ and that $(|K_M|R^2) \circ \gamma = 1$. Hence, γ is a geodesic in $\mathbb{S}^2(a)$, i.e. an arc of a great circle. By analyticity and since M has no boundary, the whole great circle Γ that contains γ is contained in M (and Γ is entirely made of global minima of f). By the above arguments, M is tangent to $\mathbb{S}^2(a)$ along Γ . Note that the catenoid \mathcal{C} with waist circle Γ also matches the same Cauchy data. By uniqueness of this boundary value problem, $M = \mathcal{C}$.

Remark 2.6 There exists an $\varepsilon > 0$ such that if a properly embedded minimal surface $M \subset \mathbb{R}^3$ satisfies $|K_M|R^2 \leq 1 + \varepsilon$, then M is a plane or a catenoid. Proof: Otherwise, for all n, there exists an $M_n \in \mathcal{F}_{1+\frac{1}{n}}$ which is never a catenoid. Since $\{M_n\}_n \subset \mathcal{F}_2$, Lemma 2.4 implies we can find $\lambda_n > 0$ such that $\{\lambda_n M_n\}_n$ converges to a non-flat properly embedded minimal surface $M \in \mathcal{F}_2$. In fact, since $\lambda_n M_n \in \mathcal{F}_{1+\frac{1}{n}}$ we have $M \in \mathcal{F}_1$, and so, Corollary 2.5 implies M is a catenoid centered at $\vec{0}$. Since the $\lambda_n M_n$ converge strongly to M, they must also be catenoids, which gives the desired contradiction.

The statements in Theorem 1.2 follow directly from Lemmas $2.1,\,2.4$ and from Proposition 2.5.

William H. Meeks, III at bill@math.umass.edu Mathematics Department, University of Massachusetts, Amherst, MA 01003

Joaquín Pérez at jperez@ugr.es

Department of Geometry and Topology, University of Granada, Granada, Spain

Antonio Ros at aros@ugr.es

Department of Geometry and Topology, University of Granada, Granada, Spain

References

[1] W. H. Meeks III, J. Pérez, and A. Ros. Embedded minimal surfaces: removable singularities, local pictures and parking garage structures, the dynamics of dilation invariant collections and the characterization of examples of quadratic curvature decay. Preprint.