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Abstract

In this paper, we apply our local removable singularity theorem and local structure
theorems for embedded minimal surfaces and minimal laminations in R? found in [?] to
prove two global structure theorems for certain possibly singular minimal laminations
of R®. We will apply one of these structure theorems in an essential way in [?] to
obtain bounds on the index and the topology of complete embedded minimal surfaces
of fixed genus and finite topology in R,
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1 Introduction.

Recent work by Colding and Minicozzi [?, 7, 7, 7] on removable singularities for certain
limit minimal laminations of R®, and subsequent applications by Meeks and Rosenberg [?,
?] demonstrate the fundamental importance of removable singularities results for obtaining
a deep understanding of the geometry of complete embedded minimal surfaces in three-
manifolds. Removable singularities theorems for limit minimal laminations also play a
central role in our papers [?, ?, ?] where we obtain topological bounds and descriptive
results for properly embedded minimal surfaces of finite genus in R3.

In this article, we will extend some of these results. We will prove global theorems on
the structure of certain possibly singular minimal laminations of R®. These theorems de-
pend on the local theory of embedded minimal surfaces and minimal lamination developed
in [?]. Besides having important applications (see [?]), these two structure theorems help
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provide important geometrical insight for resolving the following fundamental conjecture
in [?], at least in the case the set S described in it is countable.

Conjecture 1.1 (Fundamental Singularity Conjecture (Meeks, Pérez, Ros)) Suppose
S C R? is a closed set whose 1-dimensional Hausdorff measure is zero. If £ is a minimal
lamination of R® — S, then L has the structure of a CY“-minimal lamination of R3.

Since the union of a catenoid with a plane passing through its waist circle is a singular
minimal lamination of R? whose singular set is the intersecting circle, the above conjecture
represents the best possible result. We now give a formal definition of a singular lamination
and the set of singularities associated to a leaf of a singular lamination.

Given an open set A C R® and N C A, we will denote by N the closure of N in A.

Definition 1.2 A singular lamination of an open set A C R? with singular set S C A is
the closure Z* of a lamination £ of A — S , such that for each point p € S, then p € ZA,
and in any open neighborhood U, C A of p, N U, fails to have an induced lamination
structure in U,. For a leaf L of £, we call a point p € I“NnSa singular leaf point of L,
if for some open set V' C A containing p, then L NV is closed in V — S, and we let Sp,
denote the set of singular leaf points of L. Finally, we define ZA(L) = L USy, to be the

leaf of L associated to the leaf L of L. In particular, if for a given leaf L € £ we have
NS =0, then L is a leaf of Z".

Conjecture ?? is motivated by a number of results that we obtained in [?] and the
two structure theorems presented here. In Section 7?7, we shall prove the following general
Structure Theorem for possibly singular minimal laminations of R whose singular set is
countable (see Theorem ?7? below). The Structure Theorem below is useful in applications
because of the following situation. Suppose that L is a nonplanar leaf of a minimal
lamination £ of R? — &. In this case, its closure L has the structure of a possibly singular
minimal lamination of R, which under rather weak hypotheses, can be shown to have a
countable singular set. Then, if L can also be shown to have finite genus, then statement
7 of the next theorem demonstrates that £ = £ = {L} is a smooth properly embedded
minimal surface in R3.

Theorem 1.3 (Structure Theorem for Singular Minimal Laminations of R?)

Suppose that L =L U S is a possibly singular minimal lamination of R® with a countable
set § of singularities. Then:

1. The set P of leaves in L which are planes forms a closed subset of R3.

2. The set Py of limit leaves of L is a collection of planes which form a closed subset
of R3.



3. If P is a plane in P —Pyum, then there exists a § > 0 such that for the §-neighborhood
P(5) of P, one has P(6) N L = {P}. In particular, SN (P — Plim) = .

4. If pe S and p ¢ UpepP, then for e > 0 sufficiently small, L(p,e) = LN B(p,e) has
finite area and contains a finite number of leaves, each of which is properly embedded
in B(p,e) —S. Each point of B(p,e)NS represents the end of a unique leaf of L(p,€)
and this end has infinite genus. In particular, if p is an isolated point of S, then € can
be chosen so that L(p,e) consists of compact leaves and a single smooth noncompact
leaf with infinite genus and one end.

Now suppose that the lamination £ of R® — S contains at least one nonplanar leaf L.

5. Either L is a leaf of L, proper in R and L is the only leaf of L, or else L has the
structure of a possibly singular mzmmal lammatwn of R® (with singular set contained

in L NS) which consists of the leaf L’ ( ) together with a set P(L) consisting of
one or two planar leaves of L. In particular, L is the disjoint union of its leaves and
it contains a nonempty set of planar leaves, if it has more than one leaf.

3
6. If L # {L}, then the leaf ZR (L) of L is properly embedded in a component C(L) of
R3—P(L) and C(L)NL = L. Furthermore, if P is a plcme in P(L), then every open

e-slab neighborhood P(c) of P intersects the leafﬁ ( ) in a connected set and the
connected surface L N P(g) has infinite genus and unbounded curvature.

7. If L has finite genus, then L is a smooth properly embedded minimal surface in R? (thus
L=L={L} and S = 0).

In the next theorem, we will consider the case where the possibly singular minimal
lamination arises as a limit of a sequence of embedded, possibly nonproper, minimal
surfaces in R3, which satisfies the locally positive injectivity radius property described in
the next definition.

Definition 1.4 Consider a closed set W C R3 and a sequence of embedded minimal
surfaces { My }n (possibly with boundary) in A = R® — W. We will say that this sequence
has locally positive injectivity radius in A, if for every q € A, there exists e, > 0 and
ng € N such that for n > ng, the restricted functions I Mn‘BRS (g.eq)M, OT€ uniformly
bounded away from zero, where 1y, is the injectivity radius function of M,.

By Proposition 1.1 in [?], the property that a sequence {M,}, has locally positive
injectivity radius in the open set A is equivalent to the property that the sequence is
locally simply connected in A, in the sense that around any point in A we can find a ball



B C A centered at the point such that for any n sufficiently large, B intersects M,, in
components which are disks with boundaries on the boundary of B.

In [?], we will apply the following Theorem ?? in an essential way to prove that for
each nonnegative integer g, there exists a bound on the number of ends of a complete
embedded minimal surface in R? with finite topology and genus at most g. This topolog-
ical boundedness result implies that the stability index of a complete embedded minimal
surface of finite index has an upper bound that depends only on its finite genus. In this
application of Theorem 77, the set W will be a finite set.

Theorem 1.5 Suppose W is a countable closed subset of R and {M,}, is a sequence
of embedded minimal surfaces (possibly with boundary) in A = R® — W which has locally
positive injectivity radius in A. Then, after replacing by a subsequence, the sequence of
surfaces { My, },, converges on compact subsets of A to a possibly singular minimal lamina-
tion £ = £ U 8A of A (here T4 denotes the closure in A of a minimal lamination L of
A — 84, and S is the singular set of ZA). Furthermore, the closure L in R® of UrerL
has_ the structure of a possibly singular minimal lamination of R3, with the singular set S
of L satisfying
ScStuWwni).
Let S(L) C L denote the singular set of convergence of the M,, to L. Then:
1. The set P of planar leaves in L forms a closed subset of R3.

2. The set Py of limit leaves of L is a collection of planes which form a closed subset
of R3.

3. For each point of S(L) US4, there passes a plane in Py and each such plane
intersects S(L) UW US4 in a countable closed set.

4. Through each point of p € W satisfying one of the conditions (4.A),(4.B) below,
there passes a plane in P.

(4.A) The area of {M, N Ry}, diverges to infinity for all k large, where Ry, is the
ring {z € R3 | k%rl <l|lz—pl <z}

(4.B) The convergence of the M, to some leaf of L having p in its closure is of
multiplicity greater than one.

5. If P is a plane in P — Pim, then there exists § > 0 such that for the §-neighborhood
P(8) of P, one has P(6) N L = {P}.

6. Suppose that there exists a leaf L of L which is not contained in P. Then the
convergence of portions of the My, to L is of multiplicity one, and one of the following
two possibilities holds:



(6.1) L is proper in R} P = 0,L.N(SAUS(L)) = @ and L = {L}.

(6.2) L is not proper in R®, P # @ and LN (SAUS(L)) = O. In this case, there
exists a subcollection P(L) C P consisting of one or two planes in P such that
L=LUP(L), and L is proper in one of the components of R® — P(L).

In particular, L is the disjoint union of its leaves, each of which is a plane or a
minimal surface, possibly with singularities in W, which is properly embedded
(not necessarily complete) in an open halfspace or open slab of R3.

7. Suppose that the surfaces M,, have uniformly bounded genus. If SUS(L) # @, then
L contains a nonempty foliation F of a slab of R® by planes and @ N JF consists
of 1 or 2 straight line segments orthogonal to these planes, intersecting every plane
in F. Furthermore, if there are 2 different line segments in mﬁ F, then in the
related limiting minimal parking garage structure of the slab, the limiting multigraphs
along the 2 columns are oppositely oriented. If the surfaces M, are compact, then

L = F is a foliation of all of R? by planes and (L) consists of complete lines.

In statement ?? of the above theorem, we refer to the “related limiting minimal parking
garage structure of the slab” which has not really been defined precisely because the
sequence of the surfaces {M,}, only converges to a minimal lamination £ in R — W,
rather than to a minimal lamination of R3. If F is a union of planar leaves of £ which
forms an open slab, then F NS = @ and for n large, M, N K has the appearance of a
parking garage structure away from the small set W N S(£). In spite of this problem that
arises from W, we feel that our language here appropriately describes the behavior of the
limiting configuration. We also remark that there exist examples of sequences {My,}, of
nonproper embedded minimal disks in {z3 > 0}, which have locally positive injectivity
radius, where W = {0} and such that Z is a foliation of a halfspace of R® with singular set
of convergence S(L) being the positive zs-axis. For example, to obtain this case one just
lets M,, = nL, where L is one of the nonproper leaves in Example II in Section 2 of [?],
S(L) is the nonnegative x3-axis and S = (). The reason for this is that the sequence D,, of
compact minimal disks given in this Example II converge to a singular minimal lamination
Ly of the ball. By Colding-Minicozzi [?], there exists a sequence \,, — oo such that A, D,
converges to the foliation F of R? by horizontal planes with singular set of convergences
S(F) the zz-axis. Thus, we see that £ = F N {z3 > 0} and S(£) = S(F) N {z3 > 0},
which equals the positive x3-axis.

2 The proof of Theorem ?77.

Conjecture 77 stated in the introduction has a global nature, because there exist interesting
minimal laminations of the open unit ball in R? punctured at the origin which do not
extend across the origin, see Section 2 in [?]. In hyperbolic three-space H?, there are



rotationally invariant global minimal laminations which have a similar unique isolated
singularity. The existence of these global singular minimal laminations of H?® demonstrate
that the validity of Conjecture ?? depends on the metric properties of R®. However, in
[?], we obtained a remarkable local removable singularity result in any Riemannian three-
manifold NV for certain possibly singular minimal laminations. Since we will apply this
theorem repeatedly, we give its complete statement below.

Given a three-manifold N and a point p € N, we will denote by By (p,r) the metric
ball of center p and radius r > 0.

Theorem 2.1 (Local Removable Singularity Theorem) Suppose that L is minimal
lamination of a punctured ball By (p,r) — {p} in a Riemannian three-manifold N. Then
LN Bx(p,r) extends to a minimal lamination of By (p,r) if and only if there exists a
positive constant ¢ such that |Kg|d*> < c in some subball, where |Kr| is the absolute
curvature function on L and d is the distance function in N to p (equivalently by the
Gauss theorem, for some positive constant ¢’, |Az|d < ¢, where |Az| is the norm of the
second fundamental form of L). In particular:

1. The sublamination of L consisting of the closure of any collection of its stable leaves
extends to a minimal lamination of By (p,r).

2. The sublamination of L consisting of limit leaves extends to a minimal lamination
of Bn(p, 7).

3. A possibly singular minimal foliation F of N with at most a countable number of
singularities has empty singular set.

In this section and the next one, we shall prove two theorems on the structure of certain
possibly singular minimal laminations of R?, which were stated in the introduction. In the
laminations described in both theorems, the singular set S of the lamination is countable
and the lamination can be expressed as a disjoint union of its possibly singular minimal
leaves (see the last statement of item ?7 of Theorem ?? and of item ?? of Theorem ?7).

Recall from Definition ?? that a singular lamination of an open set A C R? with
singular set S C A is the closure ZA of a lamination £ of A — S, such that for each point
p €S, then p € ZA, and in any open neighborhood U, C A of p, the closure £N UpA fails
to give rise to an induced lamination structure. Furthermore, the leaves of the singular
lamination £ are of the following two types.

o [f for a given L € L we have I‘ns = @, then L a leaf of .

e If for a given L € £ we have I*ns # (), then ZA(L) = LUSy is a leaf of ZA, where
Sy, is the set of singular leaf points for L (see Definition ?7?).



We first remark that the singular set S of L% is closed in A. Also note that since £ is
a lamination of A — S, then £i=ruUs (disjoint union). As a consequence, the closure

L of £ considered to be a subset of R® is £ = £ U S U (JANL). In contrast to the
behavior of (regular) laminations, it is possible for distinct leaves of a singular lamination
L% of A to intersect. For example, the union of two orthogonal planes in R? is a singular
lamination £ of A = R? with singular set S being the line of intersection of the planes.
In this example, the above definition yields a related lamination £ of R® — S with four
leaves which are open halfplanes and £ has four leaves which are the associated closed
halfplanes that intersect along S; thus, £ is not the disjoint union of its leaves. However,
in the Colding-Minicozzi Example II in Section 2 of [?], the singular lamination £ of the
open ball B consists of three leaves, which are the unit disk and two spiraling nonproper
disks, and so, this singular lamination is the disjoint union of its leaves. In this example,
the singular set S is {0}.
Proof of Theorem ??7. We will first produce the possibly singular limit lamination i [
the M, have uniformly locally bounded curvature in A, then it is a standard fact that
subsequence of the M, converges to a minimal lamination £ of A with empty singular
set and empty singular set of convergence (see for instance the arguments in the proof
of Lemma 1.1 in [?]). In this case, Z' = £ and $1 = 0. Otherwise, there exists a
point p € A such that, after replacing by a subsequence, the supremum of the absolute
curvature of B(p, %) N M, diverges to oo as n — oo, for any k. Since the sequence of
surfaces {B(p, %) N My}, is locally simply connected in R®, Proposition 1.1 in [?] implies
that for k and n large, B(p, %) N M,, consists of disks with boundary in 0B(p, %) By
Colding-Minicozzi theory, for some kg sufficiently large, a subsequence of the surfaces
{B(p, k—lo) N My}, (denoted with the same indexes n) converges to a possibly singular
minimal lamination £,, of B(p, k—lo) with singular set S, C B(p, k—lo), and £, C B(p, Hio) cSp
contains a stable minimal punctured disk D), which is contained in the limit set of £, and
with 0D, C 0B(p, k—lo) and D,NS, = {p}; furthermore, D,, extends to the stable embedded
minimal disk D,, in B(p, %), which is a leaf of £,,. By the curvature estimates in [?], there
is a solid double cone in B(p, k—lo) with axis passing through p and orthogonal to lTp at that
point, that intersects D_p only at the point p and such that the complement of this solid
cone in B(p, k—lo) does not intersect S,. Also, Colding-Minicozzi theory implies that for n
large, B(p, k—lo) N M,, has the appearance of a highly-sheeted double multigraph around D,,.
A standard diagonal argument implies, after replacing by a subsequence, that the
sequence {M,}, converges to a possibly singular minimal lamination A= U8Aof A
with singular set S4 € A. Furthermore, the above arguments imply that in a neighborhood
of every point p € S4, ZA has the appearance of the singular minimal lamination .C_p
described in the previous paragraph.

Once we have found ZA, we consider the possibly singular lamination £ = £ US of



R3, whose singular set is the disjoint union

S=84U {peWNL | L does not admit locally a lamination structure around p}.

It remains to prove the items ?77,...,77 in the statement of the theorem. Since the limit
of a convergent sequence of planes is a plane, the set P of planes in £ forms a closed set
in R3. This proves that statement ?? of the theorem holds.

From the local Colding-Minicozzi picture of % near a point of S4, each limit leaf Ly
of £ is seen to be stable and to extend smoothly across S 4 to a stable minimal surface L.
Since L; is smooth and complete outside the closed countable set W in R3, Corollary ??
implies that the closure of L; in R? is a plane. Thus, the set P, of limit leaves of £ is a
collection of planes. Since the set of limit leaves of £ in P forms a closed set in R3, the
set of these planes forms a closed set in R®. This proves that statement ?? of the theorem
holds.

Again the Colding-Minicozzi local picture implies that through each point of S(£)US4
there passes such a limit leaf of £ and which, by statement 2 of the theorem, must be
a plane in Pyy,. Suppose now that P € Py, intersects S(L) at some point, and we will
prove that P N (S(L£)UW US4) is a countable closed set. By the local simply connected
property of the sequence {M,,},, we have that (S(£)US4)N (P — W) is a closed discrete
subset of P — W, with limit points in P only in the countable closed set PNW. It follows
that PN (S(£)UW USA) is a closed countable set of R3. This proves statement ??.

Suppose that p € W satisfies the area hypothesis in statement (4.A) in the theorem.
Then it follows that either p is in the closure of a limit leaf of £ (which must be a plane by
item 2 and so, there passes a plane in P through p), or else condition (4.B) in the theorem
holds, i.e. there exists a leaf ¥ of £ having p in its closure, such that the multiplicity
of the convergence of portions of the M, to ¥ around p is greater than one. This last
property implies the universal cover of ¥ is stable, and that universal cover of the leaf
of £ that contains ¥ is stable as well. Again by the arguments above, an application of
Corollary ?? proves that the closure of ¥ in R? is a plane, thereby proving statement ??
of the theorem.

In order to prove statement ??, suppose now that P is a plane in P — Pjj,. Since
Plim is a closed set of planes, we can choose § > 0 such that the 2)-neighborhood of P
is disjoint from Py,. By statement 3, through every point in S(£) U S, there passes a
plane in Pjy,. It follows that S(L£) U S4 is a positive distance from P. Now suppose that
the intersection of £ with any closed ball B(p,d) centered at a point p € P has infinite
area. Then a similar argument as in the last paragraph shows that we find a plane in
Pim that intersects B(p, §), which is impossible. It follows that the intersection of £ with
every closed ball B(p,d) centered at a point p € P has finite area for some fixed positive
sufficiently small §. If the d-neighborhood P(4) of P intersects £ in a portion L’ of leaf
different from P, then such a leaf, while it may have singularities in W, is proper in P(6)



(by the finite area property inside balls B(p,§)). We now check that L’ is disjoint from
P. Otherwise, there is an isolated point w € L' N P C W. Choose and r > 0, r < §, such
that the circle S, C P of radius r centered at p is a positive distance from W, and hence,
a positive distance 2¢ from L’. Using L’ as a barrier, we see that the circle S,.(¢) of height
e over S, together with the circle S,. C P of radius ' < r bound a stable catenoid C(r'),
which is impossible for r’ sufficiently small. Hence, L’ does not intersect P. A standard
application of the proof of the Halfspace Theorem [?] using catenoid barriers still works in
this setting to obtain a contradiction to the existence of L’. Hence, P(§) N L = P, which
proves statement ?77.

Suppose now that L is a leaf of £ that is not a plane in P. If L is proper in R3, then
the proof of the Halfspace Theorem implies P = ). To finish statement (6.1), it remains
to prove that £ = {L} (which in turn by statement 3 implies S(£)US“ = @). Otherwise,
L contain a leaf Ly # L, and Ly is not flat since P = 0. Furthermore, L; is proper in
R3 (because L; would contain a limit leaf which is a plane in P), so the surfaces L, L4
contradict the Strong Halfspace Theorem (or rather its proof that holds in this setting
and which allows one to construct a least-area surface which is a plane between L and
L1). This proves statement (6.1). Now assume L is not properly embedded in R3. Thus,
there exists a limit point ¢ of L not contained in L. We claim that there is a plane P € P
passing through ¢, which holds by statement 3if ¢ € S(L)US A To prove the claim, first
suppose g € A. In this case, the locally simply connected hypothesis of {M,,}, around ¢
implies that ¢ lies on a limit leaf of £, and subsequently, it lies in a limit leaf of £, which
in turns must be a plane by statement 2. Finally, suppose that ¢ € S —S4. In particular,
q € W. Reasoning by contradiction, if there is no plane of P passing through ¢, then
statement 4 implies that some small closed ball B(q, €) intersects £ in a compact possibly
singular minimal surface of finite area. This is impossible, since ¢ is a limit of a divergent
sequence of points in the leaf L and ¢ ¢ L. This proves our claim. Since through any limit
point of L there passes a plane in P, a straightforward connectedness argument shows
that L = L UP(L) with P(L) consisting of at most two planes. In particular, L must be
proper in the component C(L) of R? — P(L) that contains L, and (6.2) is also proved.

In order to prove item 7, suppose from now on that the surfaces M,, have uniformly
bounded genus and S U S(L) # O.

Assertion 2.2 Through every point p € SUS(L), there passes a plane of P (in particular,
P#0).

Proof of Assertion 77. Fix a point p € SUS(L). We will discuss three possibilities for

e ASSUME p € S(L) U SA4. In this case, item 3 implies that there exists a plane
P € Pym C P passing through p.



e ASSUME p IS AN ISOLATED POINT OF SN W. Arguing by contradiction, suppose
no plane of P passes through p. By statement 77, neither of the conditions (4.4 ),
(4.B) hold. Since (4.A) does not occur, we may assume that there is a small closed
neighborhood B(p,e) such that £ N B(p,e) contains a finite number of compact
smooth surfaces with boundary on OB(p,e) and a finite number of noncompact
properly embedded minimal surfaces {31,...,%,,} in B(p,e) — {p}. (Otherwise,
there would be a limit leaf of £ N (B(p,e) — {p}), contradicting (4.A.).)

The following argument shows that there is exactly one such noncompact surface (i.e.
m = 1) and that this surface ¥; has just one end. Suppose m > 1 and let {3(k)}
be a compact exhaustion of Yo with 039 C X(k) for all k. Let C be the closure
of the component of B(p, ) — (X1 U X2) that intersects both X1, X9 in its boundary
and let 2 (k) be a surface of least-area in C' with boundary 8% (k). A subsequence
of these least-area surfaces i(k’) converges to a properly embedded stable minimal
surface 3 (o0) C B(p,e) — {p} with boundary 9%(co) = 8%y, and ¥(c0) is disjoint
from ¥; (by the interior maximum principle). Replacing 3o by i(oo) and then
repeating the argument using a compact exhaustion of X1 in place of one of Yo,
we produce another noncompact properly embedded stable minimal surface ¥/(c0)
in B(p,e) — {p} with 8%'(c0) = ¥ and which is disjoint from Y(c0). By the local
removable singularity theorem (Theorem ?7), these stable minimal surfaces extend
smoothly across p, thereby contradicting the maximum principle applied at their
intersection point p.

The above connectedness argument applied at smaller choices of ¢ also shows that
31 has one end. Since the surfaces M,, have uniformly bounded genus and converge
with multiplicity one to X1 (this last property follows from the fact that (4.B) does
not occur at p), then ¥; has finite genus. In particular, ¥; has an annular end. By
similar arguments (joaquin: Insert these arguments instead here) as those in
point 1 of the proof of Theorem 5.1 in [?], the minimal surface ¥ extends smoothly
across p, contradicting that p € S.

e ASSUME THAT p € SNW IS NOT AN ISOLATED POINT. Since S N W is a countable
closed set of R3, p must be a limit of isolated points py € SN W, so our assertion
holds in this case by taking limits of planes occuring in the preceding point.

This finishes the proof of Assertion ?7.
Assertion 2.3 £ =P.

Proof of Assertion ?77. Arguing by contradiction, assume £ # P. Since SUS(L) # @,
Assertion ?? implies P # . Then choose a leaf L of £ in £—P and note that item 6 in the
theorem implies L is proper in the open region R? — P(L). Here, P(L) consists of one or
two planes. Since the convergence of portions of the M, to L has multiplicity one, then L
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has finite genus at most equal to the uniform bound on the genus of the surfaces in {M,, },.
Also, note that by Assertion ??, L U P(L) is a possibly singular minimal lamination of
R? (it is a sublamination of £) with singular set contained in S N P(L). By item 6 of the
theorem, SNP(L) is a countable closed set of R3. Item 7in the statement of Theorem ??
in the introduction states that the finite genus leaf L must be the only leaf of the possibly
singular minimal lamination LUP(L) but P(L) # ©. This contradiction finishes the proof
of the Assertion ?77.

We now finish the proof of Theorem ??. Since £ = P, then S = @J. Since by hypothesis
SUS(L) # O, it follows that S(L£) # . Also note that the arguments at the end of the
proof of Theorem ?? show that for a plane P in P, PN.S(L) cannot contain more than two
points and if PN (S(£)US4) contains exactly two points, then the corresponding forming
double multigraph in the M,, around these points are oppositely oriented (otherwise, for n
large in a fixed size ball containing these points, the surfaces M,, have unbounded genus).
By the curvature estimates in [?] and the earlier described local picture of £ near a point
p € S(L), one obtains the required sublamination F in £ = P (which in fact is a foliation
of a closed slab or halfspace of R? by planes), with one or two transverse Lipschitz curves
in S(L£). Meeks’ regularity theorem [?] implies that S(L) consists of straight line segments
orthogonal to F, and so, there is a related limiting minimal parking garage structure of
F, and we will have shown that the first two statements of item 7 hold. The proof of the
last statement (assuming compactness for the surfaces M),) is also standard once one has
L = P. This completes the proof of the theorem. O

3 The proof of Theorem 77.

Let £ = £ US be a possibly singular minimal lamination of R? with a countable closed
singular set S. The set of planes P in £ clearly forms a closed set of R® and the set
of limit leaves Py, of £ are planes, since if L is a limit leaf of £, then its universal
cover is stable and extends across S to be a complete stable minimal surface (the local
removable singularity theorem). Since the set of limit leaves of a minimal lamination forms
a closed set, then Py, represents a closed set of R®. These observations prove the first two
statements in Theorem ?77?7. Statement 3 follows from the arguments we used in the proof
of the similar statement 5 of Theorem 77. Statement 4 follows with little modification
from the arguments given in the proof of Assertion ?77.

Assume now that L is a nonplanar leaf of £. The arguments in the proof of statement
4 of Theorem 7?7 apply to prove statement 5.

We now begin the rather long proof of statement 6. Recall the hypothesis of this
statement is that the nonplanar leaf L of £ is not the only leaf of £L. If S = @, then
statement 6 would follow from the statements of Theorem 1.6 in [?] and from Theorem
?? in [?]Joaquin, please look up, which states that a nonflat finite genus leaf of a
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minimal lamination of R? is a properly embedded minimal surface and the only leaf of
the lamination. We will need to check that the proofs presented in these papers can be
generalized to the case where S # () and countable. This verification will be more difficult
here but it is still possible to carry out because the main tool in these proofs is to produce
via barrier constructions complete properly embedded stable minimal surfaces which are
planes in the complement of a given leaf; in our case, we can similarly construct properly
embedded stable minimal surfaces (not necessarily complete) which by Theorem ?? can
be extended through S to complete stable minimal surfaces which are planes.

Since £ # {L}, statement 5 and the connectedness of L imply that L is properly
embedded in a component C(L) of R® — P(L). Clearly, there are no planar leaves of £ in
C(L) by the proof of the Halfspace Theorem. If L’ is a nonflat leaf of £ that is different
from L and which intersects C(L), then if a plane in P(L’) intersects C'(L), then this
plane must be a plane in P(L). Since a similar statement holds with the roles of L and L’
reversed, then one sees that C(L) = C(L’) and P(L) = P(L’). Hence, L and L’ are both
properly embedded in the simply connected region C'(L), and so, bound a region X in
C(L); we consider X to be a relatively closed domain in C'(L) with boundary LUL’. Since
the two boundary components of X are good barriers for solving Plateau problems in X
(in spite of being singular), a now standard argument (see, [?]) shows that there exists
a properly embedded least-area surface ¥ in X that separates L C 90X from L' C dX.
However, since X is not necessarily complete, the surface Y is not necessarily complete.
On the other hand, it is clear that when considered to be a surface in R?, ¥ is complete
outside of the set SNP(L), which is a countable closed set. Hence, by our local removable
singularity theorem, ¥ extends to be a complete stable minimal surface 3 in R3. Since ¥ is
a plane, clearly ¥ = X is also a plane which is impossible. This proves the first statement
in item 6 of the theorem. In a similar way, applying the proof of Theorem 1.6 in [?] and
using the local extendability of a stable minimal surface in C'(L) which is complete outside
of SNP(L) and has its boundary in a plane in C(L), one sees that P(e) intersects L in a
connected set.

It remains to prove that the connected surface L. = (L — S) N P(e) has infinite genus.
If this property were to fail, then we can first choose ¢ sufficiently small so that L. has
genus zero. It then follows from statement 4 that L(e) is a smooth surface with boundary
on a plane P. C C(L). In [?], we considered a related easier situation where L is a leaf
of finite genus in a nonsingular minimal lamination of R? with more than one leaf. In
that paper, we obtained a contradiction to the existence of such a minimal lamination
by applying a variant of the Lopez-Ros argument; the original argument was first used
to prove that the catenoid and plane are the only complete embedded minimal surfaces
in R? with genus zero and finite topology. We will not apply the Lopez-Ros argument
here to obtain a contradiction to the existence of L., but rather, we will apply several key
theoretical results and arguments that we have obtained in earlier sections of the present

paper.
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Let I, be the injectivity radius function of L. We first consider the special case where I,
decays faster than linearly in terms of the distance to the plane L. By the proof of the local
picture on the scale of topology theorem, there exists a sequence {p, }, of blow-up points
on the scale of topology such that lim,,_. dgs(pn, P) = 0. By this local picture theorem,
for n large, we may assume that there exists a small ball B(p,,e,), 0 < &, < dgs(pn, P),
such that the component of L. NB(p,,¢e,) containing p,, is compact, has its boundary in
OB(pn,e,) and has the appearance, under scaling, to either a properly embedded genus
zero minimal surface in R? or to a parking garage structure with two oppositely oriented
columns. In particular, there exists a sequence of simple closed geodesics I',, C L. near p,
such that the lengths L,, = length(~y,) are converging to zero.

Our previous arguments imply that 7, is the boundary of an area-minimizing noncom-
pact orientable minimal surface ¥,, in the closure of the component of P(e) — (P: U L)
which contains the plane P. in its boundary. The surfaces ¥,, are complete in R? outside
of the set PNS. Since the X, are stable, each extends to a complete orientable stable
minimal surface 3,, with boundary 7,. By the maximum principle for harmonic functions,
Y, NP =@, and so %, is seen to be complete already. Since each complete stable ori-
entable X, has finite total curvature [?] and is contained in a slab, it has planar ends.
By the maximum principle at infinity [?], there is a plane T,, asymptotic to an end of %,
which intersects ¥,, in a compact analytic set containing some point of ~,. Elementary
separation arguments, using the fact that L. is a planar domain and the fact that the
slab between T,, and P intersects L. in a connected set, imply that near P every plane
in P(e) intersects L. transversely in a simple closed curve. It follows from [?] that P(e)
has one limit end and, after choosing a possibly smaller ¢, L. is a simple closed curve
and the simple ends of L. are planes. By Theorem 1 in [?] which describes the geometry
of properly embedded minimal surfaces of finite genus in R?, each of the short geodesics
vn can be taken to represent the homotopy class of a plane intersection with L.. By the
divergence theorem, the nonzero flux of the gradient of the distance function on L. to P
across the curve =, is independent of n. Since these fluxes are no greater than the lengths
L,, = length(vy,), which are converging to zero as n — 00, we obtain a contradiction.
Hence, we may assume that there is a constant C' > 0 such that I, > Cdgs(-, P) in P(e).

We next check that £. = L. U P is a minimal lamination of P(¢). Arguing by contra-
diction, assume that L. has singularities. Since the set of these singularities is a countable
closed set in P, we may assume that = € P is an isolated singularity for £.. After a rigid
motion, we may assume that P is the (z1,z2)-plane, x = 0 and L. lies above P. Since
L. does not extend across {0}, the local removable singularity theorem implies that there
exists a sequence of points {p,}n C L. converging to 0 with |Kp|(pn)|ps| > n. Consider
the sequence of related minimal surfaces M,, = ﬁl)e and note that by letting W = {6},
these surfaces satisfy the hypothesis of Theorem ?7. Since these surfaces have genus zero,
a subsequence converges to a minimal lamination A of R3. Since the curvatures of these
surfaces are unbounded on the unit sphere S?, then the singular set of convergence S(A)
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is nonempty.

Since 0 is an isolated singularity of A, the linear decay estimate on the injectivity
radius implies that S(A) N S? lies above a vertical cone based at 0. Let y € S(A)NS?
and let P, be the horizontal plane in A passing through y. Since the surfaces M,, are
planar domains and uniformly simply connected in a fixed size neighborhood of Py, the
arguments Joaquin, if possible try to explain part of the arguments to be more
self contained or be more explicit near the end of the proof of the local picture scale of
topology theorem (Theorem 10.1 in [?]) imply that £ is a foliation of planes of the closed
upper halfspace H of R? with one or two lines in S(A), each of whose closure intersects
S(A)Nn P = {0} in a single point. Hence, S(A) contains a single line which is the positive
T3-axis.

Since L. is proper in the half-open slab P x (0, ¢], the above argument implies that for
given k isolated points {p1, p2,...,pr} C S(L:) C P, there exists disjoint disks D(py,ex) C
P such that the 0D(pg,ex) % (0,¢] intersects L. in two spiraling curves that limit to the
circle 9D (pg,er) x {0}. Straightforward modifications of the topological and flux-type
arguments Joaquin, if possible try to explain part of the arguments to be more
self contained or be more explicitnear the end of the proof of the local picture on the
scale of topology in [?] show that there must exist exactly two singular points of S(L.)
and connecting loops ~,, which have constant nonzero V3 flux (between =, and =, + 1 is
a proper domain in L. with a finite number of horizontal planar ends). As n — oo, these
loops are becoming almost-horizontal with uniformly bounded length, and so, their Vz3
fluxes must converge to zero. This contradiction proves that I restricted to L. cannot
decay at most linearly as a function of the distance to P. This completes the proof of
statement 6. Statement 7 follows immediately from statements 5 and 6. The theorem now
follows. O
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