An example of a foliation in the plane

 $\mathcal{F}=$ integral curves of a vector field.

Examples of foliations and laminations in the plane

 $\mathcal{F}=$ integral curves of a vector field.

 $\mathcal{L}=$ union of $\mathbf{S^1}$ and green and red spirals

Theorem (Geodesic lamination closure theorem)

If Δ is a Riemannian surface and $\Gamma \subset \Delta$ is a complete embedded geodesic, then the closure $\overline{\Gamma}$ is a geodesic lamination of Δ .

Proof of the Geodesic Closure Theorem

Step 1 The limit set $L(\gamma)$ is a union of geodesics.

Proof.

Suppose $\gamma \subset M$ is an embedded geodesic and let $p \in L(\gamma)$. In normal coordinates **D** around $p, \gamma \cap D$ consists of an infinite number of almost parallel geodesic segments that can be expressed as small graphs over a geodesic $I_p \subset \mathbf{D}$ passing through p. A subsequence of these graphs converges smoothly to a graph $\Gamma_p \subset L(\gamma)$ over I_p , which is a geodesic segment passing through p.

Proof of the Geodesic Closure Theorem

Step 2 The geodesics in $L(\gamma)$ are embedded and pairwise disjoint.

Proof.

Intersecting limit geodesic arcs Γ_1 , Γ_2 can be approximated by **disjoint** arcs $\gamma_1(n)$, $\gamma_2(n)$ }_n in γ with $\lim_{n\to\infty}\gamma_j(n)=\Gamma_j$. Since two distinct geodesics can never intersect nontransversely, $\mathbf{L}(\gamma)$ is a union of a collection of pairwise disjoint embedded geodesics.

Definition

For $\mathbf{H} \in \mathbb{R}$, an \mathbf{H} -hypersurface \mathbf{M} in a Riemannian manifold \mathbf{N} is a codimension one submanifold of constant mean curvature \mathbf{H} . A codimension one \mathbf{H} -lamination \mathcal{L} of \mathbf{N} is a collection of immersed (not necessarily injectively) \mathbf{H} -hypersurfaces $\{\mathbf{L}_{\alpha}\}_{\alpha \in I}$, called the **leaves** of \mathcal{L} , satisfying the following properties.

- ② If H = 0, then \mathcal{L} is a lamination of N. In this case, we also call \mathcal{L} a minimal lamination.
- **③** If $\mathbf{H} \neq \mathbf{0}$, then given a leaf \mathbf{L}_{α} of \mathcal{L} and given a small disk $\mathbf{\Delta} \subset \mathbf{L}_{\alpha}$, there exists an $\varepsilon > \mathbf{0}$ such that if (q, t) denote the normal coordinates for $\exp_q(t\eta_q)$ (here \exp is the exponential map of \mathbf{N} and η is the unit normal vector field to \mathbf{L}_{α} pointing to the mean convex side of \mathbf{L}_{α}), then:
 - The exponential map $\exp: \mathbf{U}(\Delta, \varepsilon) = \{(q, t) \mid q \in \operatorname{Int}(\Delta), t \in (-\varepsilon, \varepsilon)\} \to \mathbf{N} \text{ is a submersion.}$
 - The inverse image $\exp^{-1}(\mathcal{L}) \cap \{q \in \operatorname{Int}(\Delta), t \in [0, \varepsilon)\}$ is a lamination of $U(\Delta, \varepsilon)$.

H-lamination Closure Theorem

Theorem

Suppose L is a complete embedded H-hypersurface in an n-manifold N. Then its closure has the structure of an H-lamination of N if and only if the norm of the second fundamental form $|A_L|$ of L is bounded in each compact domain of N.

Proof.

The proof is similar to the proof of the Geodesic Closure Theorem.

Corollary

If $L \subset N$ is a complete embedded stable H-surface in a n-manifold, then its closure has the structure of an H-lamination.

Definition

A foliation of an **n**-manifold is called a **CMC** foliation if all of its leaves are **H**-surfaces (**H** possibly varying).

Conjecture

Suppose $\mathcal F$ is a codimension one CMC foliation $\mathcal F$ of a complete homogeneously regular n-manifold N. Then:

- For $n \leq 8$, there exists a bound on second fundamental form of the leaves of \mathcal{F} .
- A complete stable constant mean curvature hypersurface in \mathbb{R}^n is minimal.
- If $N = \mathbb{R}^n$, then \mathcal{F} is a minimal foliation by planes.

Remark

This conjecture holds in dimension n = 3 (Meeks, Perez, Ros).

Definition

- A minimal hypersurface $M \subset N$ of dimension n is said to be **stable** if for every compactly supported normal variation of M, the second variation of area is non-negative.
- If M has constant mean curvature H, then M is said to be **stable** if the same variational property holds for the functional A nHV, where A denotes area and V stands for oriented volume.
- A Jacobi function $f: \mathbf{M} \to \mathbb{R}$ is a solution of the equation $\Delta f + |\mathbf{A}|^2 f + \text{Ric}(\eta) f = 0$ on \mathbf{M} .
- If M is two-sided, then the stability of M is equivalent to the existence of a positive Jacobi function on M (Fischer-Colbrie).

Theorem (Meeks, Rosenberg)

If L is a limit leaf of an H-lamination $\mathcal L$ of an n-manifold N by hypersurfaces and the holonomy representation on L is trivial (for example, L is simply connected), then L is stable.

Proof.

Let $\Omega_1 \subset \Omega_2 \subset \cdots \subset \Omega_n \subset \cdots$ be a smooth exhaustion of L. Since L is a limit leaf of $\mathcal L$ and the holonomy representation on L is trivial, there exists leaves L_n of $\mathcal L$ and compact domains $\widehat{\Omega}_n \subset L_n$ which can be expressed as positive normal graphs over Ω_n of functions $f_n \colon \Omega_n \to (0, \varepsilon_n)$ with $\varepsilon_n \to 0$. Fix a point $p \in \Omega_1$ and let $F_n = \frac{f_n}{f_n(p)} \colon \Omega_n \to (0, \infty)$. Then a subsequence of the F_n converges on compact subsets of L to a positive Jacobi function on L.

Corollary

If L is a limit leaf of an H-lamination $\mathcal L$ of an n-manifold N by hypersurfaces, then the universal cover $\widetilde L$ of L is stable.

Proof.

Let $L(\varepsilon)$ be a small neighborhood of the zero section z of the normal bundle such that $\exp\colon L(\varepsilon)\to \mathbb{N}$ is a submersion. Pull back the metric and \mathcal{L} via exp and the universal cover $\pi\colon \widetilde{L}(\varepsilon)\to L(\varepsilon)$ to an H-lamination of $\widetilde{L}(\varepsilon)$ with $\widetilde{z}=\pi^{-1}(z)$ as a simply connected **limit** leaf. By the previous theorem \widetilde{z} is stable.

The next example shows that a CMC hypersurface $L \subset N$ may be **unstable** and at the same time its universal cover \widetilde{L} is **stable**.

Example (R. Schoen)

Consider a compact surface Σ of genus two with a metric g of constant curvature -1, and a smooth function $f: \mathbb{R} \to (0,1]$ with f(0)=1 and $-\frac{1}{8} < f''(0) < 0$. In the warped product metric $f^2g + dt^2$ on $\Sigma \times \mathbb{R}$:

- Each slice $\mathbf{M}_c = \mathbf{\Sigma} \times \{c\}$ is a surface of mean curvature $H = -\frac{f'(c)}{f(c)}$ oriented by the unit vector field $\frac{\partial}{\partial t}$.
- The stability operator on the totally geodesic (hence minimal) surface $\mathbf{M}_0 = \mathbf{\Sigma} \times \{0\}$ is $\mathbf{L} = \mathbf{\Delta} + \mathrm{Ric}(\frac{\partial}{\partial t}) = \mathbf{\Delta} 2f''(0)$, where $\mathbf{\Delta}$ is the laplacian on \mathbf{M}_0 .
- The first eigenvalue of L in the (compact) surface M_0 is 2f''(0), hence M_0 is unstable as a minimal surface.
- The universal cover $\widetilde{\mathbf{M}}_0$ of \mathbf{M}_0 is the hyperbolic plane.

Since the first eigenvalue of the Dirichlet problem for the laplacian in \mathbf{M}_0 is $\frac{1}{4}$, the first eigenvalue of the Dirichlet problem for the Jacobi operator on $\widetilde{\mathbf{M}}_0$ is $\frac{1}{4} + 2f''(0) > 0$. Thus, $\widetilde{\mathbf{M}}_0$ is an immersed stable minimal surface. Similarly, for c sufficiently small, the CMC surface \mathbf{M}_c is **unstable** but its related universal cover is **stable**.

Theorem (Stable Limit Leaf Theorem, Meeks, Perez, Ros)

The limit leaves of a codimension one H-lamination $\mathcal L$ of a Riemannian manifold N are stable.

Proof.

Assume: Dimension(\mathbb{N}) = 3.

First step: Interpolation result.

Below D(p, r) is a disk in a limit leaf **L** and the **blue** arcs represent graphical disks in leaves converging to **L**.

The interpolating graphs f_t between the H-graphs of $f_{t_{\alpha}}$, $f_{s_{\alpha}}$ satisfy

$$\lim_{t\to 0^+}\frac{\mathsf{H}_t(q)-\mathsf{H}}{t}=0\quad\text{for all }q\in D(p,r).$$

The interpolating graphs $q \mapsto \exp_q(\mathbf{f}_t(q)\eta(q)), t \in [t_\alpha, s_\alpha]$, where

$$\mathbf{f}_t = \mathbf{f}_{t_\alpha} + (t - t_\alpha) \frac{\mathbf{f}_{s_\alpha} - \mathbf{f}_{t_\alpha}}{s_\alpha - t_\alpha} = t \left[\frac{t_\alpha}{t} \cdot \frac{\mathbf{f}_{t_\alpha}}{t_\alpha} + \left(1 - \frac{t_\alpha}{t} \right) \cdot \frac{\mathbf{f}_{s_\alpha} - \mathbf{f}_{t_\alpha}}{s_\alpha - t_\alpha} \right],$$

satisfy

$$\lim_{t o 0^+} rac{\mathsf{H}_t(q) - \mathsf{H}}{t} = 0 \quad ext{for all } q \in D(p,r).$$

Assume: $\mathbf{H}=\mathbf{0}$ and $\mathbf{\Delta}\subset \mathbf{L}=$ unstable smooth compact subdomain. Let $\mathbf{\Delta}(s)$ be surfaces whose mean curvature increases to first order near $\mathbf{\Delta}$ and foliate the shaded region $\Omega(t)$ between $\mathbf{\Delta}$ and $\mathbf{\Delta}(t)$. Let \mathbf{V} be the unit normal field to this foliation. Let \mathbf{W} be the unit normal field to the red interpolated foliation containing \mathcal{L} . Note $\mathbf{Div}(\mathbf{V}) \leq \mathbf{Div}(\mathbf{W})$ in $\Omega(t)$. But the flux of \mathbf{V} across $\partial \Omega(t)$ is greater than the flux of \mathbf{W} across the same boundary. The divergence theorem gives a contradiction.

Applications: CMC foliations of 3-manifolds

Theorem (Curvature Estimates, Meeks, Perez, Ros)

Given $K \geq 0$, there exists $C_K \geq 0$ such that whenever N is a complete 3-manifold with absolute curvature bounded by K and $\mathcal F$ is a CMC foliation of N, then $|A|_{\mathcal F} \leq C_K$. Here $|A|_{\mathcal F}$ is the norm of the second fundamental form of the leaves of $\mathcal F$.

Corollary (Meeks)

A CMC foliation of \mathbb{R}^3 is a foliation by parallel planes

Corollary (Mean Curvature Bounds, Meeks, Perez, Ros)

If N is a complete 3-manifold with bounded absolute sectional curvature, then there is a uniform bound on the mean curvature of the leaves of any CMC foliation of N.

Proof of Curvature Estimates for CMC foliations

Proof.

After scaling and lifting to the universal cover, assume $K \leq 1$. If the theorem fails, there exists a CMC foliation $\mathcal F$ of $\mathbb N$ and a sequence of points $p_n \in \mathbb N$ on leaves $\mathbb L_n$, where $\lambda_n = |\mathbf A|_{\mathbb L_n} \geq n$. After rescaling the metric, the foliated balls $\lambda_n \mathbf B(p_n,1)$ converge to a "singular CMC foliation" $\mathcal Z = \{\Sigma_\alpha\}_\alpha$ of $\mathbb R^3$ such that:

- $|A|_{\mathcal{Z}} \leq 1$.
- ullet The leaf $oldsymbol{\Sigma}$ passing through the origin is nonflat.
- Z is not a minimal foliation.

Since $|\mathbf{A}|_{\mathcal{Z}} \leq 1$, after translations of \mathcal{Z} , we obtain another limit singular **CMC** foliation of \mathbf{R}^3 with a leaf passing through the origin having maximal **nonzero** mean curvature. But this leaf is then a **stable** sphere which is impossible.

Sharp Mean Curvature Bounds

Theorem (Meeks, Perez, Ros)

Suppose that N is R^3 equipped with a complete homogeneously regular metric satisfying: the scalar curvature of N is bounded from below by a nonpositive constant -C.

Then:

- The mean curvature **H** of any leaf of \mathcal{F} satisfies $\mathbf{H}^2 \leq \mathbf{C}$.
- Leaves of \mathcal{F} with $|\mathbf{H}| = \sqrt{\mathbf{C}}$ are stable, have at most quadratic area growth and are asymptotically umbilic.
- If $C \ge 0$, then \mathcal{F} is a minimal foliation.

Similar arguments and previous results, lead to a proof of:

Theorem (Meeks, Perez, Ros)

A codimension one CMC foliation of \mathbb{R}^n , $n \leq 5$, is minimal.

