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Abstract. In this paper we study conformal properties of properly embedded minimal surfaces
in flat three-manifolds, as recurrence, transience and existence of nonconstant bounded and/or

positive harmonic functions. We related question to the existence of nonconstant positive sub-
harmonic functions is to decide which complete embedded minimal surfaces are a-stable for

some a > 0. We tackle this question as an application of Local Picture Theorem on the Scale of
Curvature and the Dynamics Theorem for embedded minimal surfaces in [8].

1. Introduction.

The classical Liouville property for the plane asserts that the unique bounded harmonic functions
on the complex plane are constant. Clearly the upper halfplane H = {(x, y) ∈ R2 | y > 0} does not
satisfy the same property, which suggested to use the existence of nonconstant bounded harmonic
functions as a tool for the so called type problem of classifying open Riemann surfaces. There are
related properties useful for tackling this problem on a noncompact Riemann surface M without
boundary, among which we emphasize the following ones.

(1) M admits a nonconstant positive superharmonic function (equivalently, M is transient for
Brownian motion).

(2) M admits a nonconstant positive harmonic function.
(3) M admits a nonconstant bounded harmonic function.

A noncompact Riemann surface M without boundary is said to be recurrent for Bwrownian motion
if it does not satisfy property (1) (see e.g. Grigor’yan [3] for a detailed study of these properties
and for general properties of the Brownian motion on manifolds). Clearly (3) ⇒ (2) ⇒ (1). In
this paper we shall determine which of the above properties are satisfied by a properly embedded
minimal surface M ⊂ R3, in terms of its topology and the group G of isometries of M that
act discontinuously (G could reduce to the identity map). Next we summarize the results. Let
k ∈ {0, 1, 2, 3} be the rank of G.

Proposition 1.1. Every properly immersed triply periodic minimal surface (k = 3) is transient,
and it does not admit positive nonconstant harmonic functions.

Theorem 1.2. A properly embedded k-periodic minimal surface M ⊂ R3 does not admit noncon-
stant bounded harmonic functions provided that one of the following conditions is satisfied:

(1) M/G has finite topology (THIS WILL BE IMPROVED IN THM 1.4).
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(2) M is simply periodic (k = 1), translation invariant and has bounded curvature.
(3) M is doubly periodic (k = 2).

Theorem 1.3. Let M ⊂ R3 be a nonflat k-periodic properly embedded minimal surface (k = 1, 2),
such that M/G ⊂ R3/G has finite topology. Then, M is recurrent if k = 1 (including the screw
motion symmetry case) and transient if k = 2.

Theorem 1.4. Let M ⊂ R3 be a properly embedded minimal surface such that M/G has finite
topology. Then, any positive harmonic function on M is constant.

Sometimes it is useful to have similar results to the ones above, valid for Riemann surfaces
obtained as a limit object of a sequence of complete embedded minimal surfaces (as for instance a
singular minimal lamination), rather than for a minimal surface itself. In this line, we shall prove
the following result.

Theorem 1.5. Let Λ = {pi | i ∈ Z} be a quasiperiodic sequence of points in the cylinder S1 × R.
Let M = (S1 ×R)−Λ and π : M̃ → M a cyclic covering of M such that there exists a point pi ∈ Λ
and a small embedded loop around pi that lifts to an open arc in M̃ . Then, the unique positive
harmonic functions on M̃ are constant.

The study of complete stable minimal surfaces in complete flat three-manifolds is closely related
to some the above conformal questions, as we next explain. Let M ⊂ N be an orientable minimal
surface in a complete flat three-manifold N . Given a > 0, we say that M is a-stable if for any
compactly supported smooth function u ∈ C∞

0 (M ),

(1)
∫

M

(
|∇u|2 + aKu2

)
dA ≥ 0,

where ∇u stands for the gradient of u and K, dA are the Gaussian curvature and the area element
on M , respectively (the usual stability condition for the area functional corresponds to the case
a = 2). The key connection between a-stability and transience is based in the following fact.

Proposition 1.6. Let M be a a-stable minimal surface in a complete flat three-manifold N . Then
either M is flat or it is transient for Brownian motion.

Fischer-Colbrie and Schoen [2] proved that if M ⊂ R3 is a complete, orientable a-stable minimal
surface, for a ≥ 1, then M is a plane. This result was improved by Kawai [4] to a > 1/4, see also
Ros [15]. In this article we will use Proposition 1.6 to obtain flatness of complete embedded a-stable
minimal surfaces in complete flat three-manifolds, under an additional topological assumption.

Theorem 1.7. Let N be a complete orientable flat three-manifold and let a > 0. Then, any
complete orientable embedded a-stable minimal surface M ⊂ N with finite genus is totally geodesic.

Based on the above results, we make the following conjecture.

Conjecture 1.8 (Meeks, Perez, Ros). A complete embedded two-sided a-stable minimal surface in
a complete flat three-manifold is totally geodesic (flat).

The recent Local Picture Theorem on the Scale of Curvature (Meeks, Pérez and Ros [8]) can be
used to reduce the solution of Conjecture 1.8 to a particular case.

Theorem 1.9. If there exists a complete embedded nonflat orientable a-stable minimal surface
in a complete flat three-manifold, then there exists a properly embedded nonflat a-stable minimal
surface Σ ⊂ R3 which has infinite genus, bounded curvature and is dilation-periodic. On the other
hand, no such Σ can be invariant under translation.
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2. Conformal questions and coverings.

Perhaps the central result in Riemann surface theory is the uniformisation theorem, that reduces
the list of simply-connected Riemann surfaces to the Riemann sphere S2, the complex plane C and
the upper halfplane H = {(x, y) ∈ R2 | y > 0}. So, the so called type problem of classifying
Riemann surfaces topologically more complicated reduces to study proper discontinuous actions
of these models. Assume the surface in question can be accomplished by a properly embedded
minimal surface M ⊂ R3, so the universal covering M̂ of M cannot be S2. Recently, Meeks and
Rosenberg [13] have proved that the case M̂ = C can only occur when M is the plane or helicoid.
Hence, from now on we will assume the universal covering of M is H, thus M = H/Γ where Γ is a
proper discontinuous subgroup of PSl(2, R).

A useful approach to study the type problem for M is by considering the set A of conformal
coverings M̃ → M , which has a natural ordering so that two coverings M̃, M̃ ′ ∈ A satisfy M̃ � M̃ ′

if M̃ covers M̃ ′ and the corresponding covering projection commutes with those of M̃ , M̃ ′ over M .
Equivalently, one can consider the set of subgroups of Γ, ordered by inclusion. For instance, M

could be recurrent but appropriate coverings M̃ of M will certainly be either transient or admit
nonconstant positive and/or bounded harmonic functions (and then the same holds for any M̃ ′ ∈ A
such that M̃ ′ � M̃). A related approach consists of considering coverings p : M → M/G where G
is a subgroup of proper discontinuous isometries of M , and deduce conformal properties of M from
the behavior of the covering map p and the quotient surface M/G. We will use both approaches
in the sequel. As a first application, we next prove Proposition 1.1.

Proof of Proposition 1.1. Let M be a properly immersed triply periodic minimal surface in
R3, and G the group generated by three independent translations leaving M invariant. Then,
the corresponding covering π : M → M/G is abelian, M/G is compact and G has rank three. By
Theorem ??? in Lyons and Sullivan [5], M does not admit nonconstant positive harmonic functions
and is transient. This proves the Proposition. 2

3. Bounded harmonic functions.

We now study existence of nonconstant bounded harmonic functions on properly embedded
minimal surfaces in R3.

Proof of Theorem 1.2. Let M ⊂ R3 be a properly embedded minimal surface and G the
subgroup of isometries of M acting discontinously on M . By Proposition 1.1, we can assume M is
not triply periodic. This, G is either the identity map, or is cyclic with generator a screw motion
symmetry (possibly a translation) or is generated by two independent translations. In any case,
the corresponding covering M → M/G is abelian. By Theorem ??? in [5], to obtain nonexistence
of nonconstant bounded harmonic functions on M it suffices to check that M/G is recurrent.

If M/G has finite topology, then recurrency of M/G follows from from Theorem 1 in Meeks
and Rosenberg [12] in the case G 6= {identity}, and from Theorem 1 in Meeks, Pérez and Ros [9]
in the case G = {identity}. Now assume M is invariant by a translation T and has bounded
curvature. Then M has a regular neighborhood of positive radius. Since the volume growth of
R3/T is quadratic, the area growth of M/G is at most quadratic. This condition implies M/G is
recurrent (see e.g. Grygor’yan [3]). Finally, suppose that M is doubly periodic, so G is generated
by two independent translations. We do not loss generality by assuming these translations are
horizontal. Then the third coordinate function on M descends to M/G and defines a proper
harmonic function. Since (M/G) ∩ x−1

3 [0,∞) admits a proper positive harmonic function, it is a
parabolic surface with boundary, and similarly for (M/G) ∩ x−1

3 (−∞, 0]. As (M/G) ∩ x−1
3 (0) is

compact, we deduce that M/G is recurrent. This finishes the proof. 2
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We have used Theorem ??? in [5] to reduce the nonexistence of nonconstant bounded harmonic
functions on M , to the fact that M/G is recurrent. In the same paper, Lyons and Sullivan give
a similar result (Theorem ???) in order to deduce nonexistence of nonconstant positive harmonic
functions on M , which needs compactness of M/G. The hypotheses in thir theorem cannot be
weakened to recurrence, since there exist abelian covers π : M̃ → M where M is a recurrent
Riemann surface and M̃ does admit nonconstant positive harmonic functions. We next explain
briefly how to construct examples of these covers (for details, see McKean & Sullivan [6] and also
Epstein [1]). Given a Riemann surface M with first homology group H1(M ) = π1(M)

[π1(M),π1(M)] , the
class surface of M is the covering M1 of M with deck transformations group H1(M ), i.e. the loops
in M which lift to loops in M1 are those whose after abelianization give zero:

π1(M1) = [π1(M ), π1(M )].

McKean & Sullivan [6] prove that for three distinct points a, b, c ∈ S2, then the class surface M1 of
the recurrent surface M = S2 − {a, b, c}, turns out to be transient and it does not admit positive
nonconstant harmonic functions (in this case, the deck transformation group is Z ⊕ Z). Since M1

is transient, it admits a Green’s function G with pole at an arbitrarily chosen point p ∈ M1. Now
let M̂ = S2 − {a, b, c, d}, where d ∈ M . Then, Epstein [1] proves that the corresponding class
surface M̂1 does admit positive nonconstant harmonic functions, in particular, it is transient (the
transformation group of the covering M̂1 → M̂ is Z ⊕ Z ⊕ Z), giving the desired counterexample.
It is even possible to construct a covering M̃ → M with transformation group Z⊕Z of a recurrent
surface M , such that M̃ admits positive nonconstant harmonic functions on it (so M̃ is transient).
Consider again the class surface covering p : M1 → M = S2 − {a, b, c} of a thrice punctured
sphere, and take d ∈ M . Then, the restricted covering p : M1 − p−1(d) → S2 − {a, b, c, d} has
transformation group Z⊕Z and M1 −p−1(d) admits as positive harmonic function to the Green’s
function G of M1 with pole at an arbitrary point of π−1(d).

4. Recurrence and transience.

Our next goal is to demonstrate Theorem 1.3. To do this, we shall need a result due to Ep-
stein [1], that describes when a covering of a finitely punctured compact Riemann surface is either
transient or recurrent, in terms of the group of deck transformations of the covering. Every Riemann
surface Σ of genus g with n + 1 > 0 punctures, has the upper halfplane H = {z = (x, y) | y > 0}
universal covering (except the cases g = 0 with n = 0, 1), so Σ can be represented conformally as
H/Γ where Γ is a torsion free subgroup of PSl(2, R) =

{
φ(z) = az+b

cz+d | a, b, c, d ∈ R, ad − bc > 0
}

,
acting proper and discontinuously, with generators

γ1, . . . , γ2g, p1, . . . , pn+1,

constrained to the relation p1 · . . . · pn+1 = γ1 · . . . · γ2g · γ−1
1 · . . . · γ−1

2g , where γ1, . . . γ2g generate the
homology of the compactification of Σ, and p1, . . . , pn+1 denote small loops winding once around
each of the punctures of Σ. Viewing the above generators as elements in PSl(2, R), we have

• Each pi is a parabolic Möbius transformation, i.e. it has a unique fixed point Di ∈ C∪{∞},
which lies necessarily in R ∪ {∞}. Up to conjugation in PSl(2, R), pi is a real translation
pi(z) = z + λ, λ ∈ R, which makes Di = ∞.

• Each γj is a hyperbolic Möbius transformation with two fixed points Aj , Bj ∈ R∪{∞}, and
the half circle Cj orthogonal to R ∪ {∞} passing through Aj, Bj is a hyperbolic geodesic
fixed by γj (in fact, Cj is the unique hyperbolic geodesic fixed by γj). The restriction of
γj to Cj is a hyperbolic translation, i.e. there exists c > 0 such that dh(z, γj(z)) = c, for
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all z ∈ Cj , where dh denotes hyperbolic distance. Furthermore,

Aj = lim
n→∞

γn
j (z), Bj = lim

n→−∞
γn

j (z),

for any z ∈ H. Up to conjugation in PSl(2, R), γj is of the form γj(z) = λz for λ > 0, and
Cj is the imaginary axis.

Since H is simply connected, the fundamental group of Σ is Γ and its first homology group is

H1(Σ) = {
n∏

i=1

pmi

i

2g∏

j=1

γ
nj

j } ≡ {[M,N] | M = (m1, . . . , mn),N = (n1, . . . , n2g)} = Zn × Z2g.

Now suppose Γ1 is a normal subgroup of Γ with Γ/Γ1 abelian, finitely generated and torsion free,
i.e. Γ/Γ1 = Zk for a certain positive integer. Then, H/Γ1 covers naturally H/Γ = Σ with deck
transformation group Zk. As Γ/Γ1 is abelian and Γ = π1(Σ), the conmutator of π1(Σ) is contained
in Γ1, which implies that Γ/Γ1 can be seen as a subgroup of H1(Σ). This allows us to consider
another nonnegative integer number, namely the rank p of the n× k matrix (M1, . . . ,Mk), where
(M1,N1), . . . , (Mk,Nk) are generators of Γ/Γ1. In this setting, Epstein [1] proved the following
result.

(2) H/Γ1 is transient for Brownian motion if and only if k + p ≥ 3.

Proof of Theorem 1.3. Suppose M ⊂ R3 is a nonflat, k-periodic, properly embedded minimal
surface with k = 1, 2, such that M/G ⊂ R3/G has finite topology. By Theorem ??? in [12], M/G
is conformally a finitely punctured compact Riemann surface. Let g ≥ 0, n+ 1 ≥ 2 be respectively
the genus of the compactification of M/G and the number of ends, respectively. We can assume
the universal covering of M/G is H (otherwise g = 0 and n = 1, which implies the ends of M/G
are of helicoidal type, and in this case the flux vector of M along any closed curve is zero; in this
situation, a result by Pérez [14] gives that M is a helicoid, which is recurrent).

Assume firstly that M is simply periodic. Then the transformation group of the covering
M → M/G is Z, hence k = 1 and p ≤ 1. Using (2), we deduce that M is recurrent. Now suppose
M̃ is doubly periodic. By the description of the asymptotic geometry of such a surface in Meeks
and Rosenberg [11], the ends of M/G divide into two families of parallel ends, all asymptotic to
flat annuli (Scherk type ends). Since the transformation group of the covering M → M/G is Z⊕Z,
we have k = 2 and p ≤ 2. If p = 0, then the period of M along any of the ends of M/G is zero,
which is impossible (in fact p = 1 when all the ends of M are parallel, and otherwise p = 2). Hence
k + p ≥ 3 and M is again transient by (2). Now Theorem 1.3 is proved. 2

5. Positive harmonic functions.

Our main goal in this section is to prove Theorems 1.4 and 1.5. The arguments that follow
are inspired in the work by Epstein [1]. The first step in the study of existence of nonconstant
positive harmonic functions on a Riemann surface M , is to reduce ourselves to a particular case of
functions.

Definition 5.1. Let M be a Riemann surface. A harmonic function h : M → R+ is called minimal
if the only harmonic functions u : M → R+ below a multiple of h are multiples of h.

Proposition 5.2. If a Riemann surface M admits a positive nonconstant harmonic function, then
it admits a minimal nonconstant positive harmonic function.

Proof. Fix a point p ∈ M and consider the set H of all positive harmonic functions having the
value 1 at p. Clearly H is nonvoid (the function 1 lies in H) and convex. A direct application of
the Harnack inequality gives that H is compact in the uniform topology on compact subsets of M .



6 WILLIAM H. MEEKS III, JOAQUÍN PÉREZ, AND ANTONIO ROS

By the Krein-Milman theorem, H equals the convex hull of the set of its extremal elements (recall
that an element h ∈ H is called extremal if whenever h = θh1 + (1 − θ)h2 for some θ ∈ [0, 1] and
h1, h2 ∈ H, then θ = 0 or θ = 1). By assumption, H does not reduce to {1}, hence there exists an
extremal element h ∈ H, with h 6= 1 (in particular, h is not constant). It remains to prove that h
is a minimal harmonic function. To see this, let u be a positive harmonic function with u ≤ ch for
some c > 0. Exchanging the constant c, we can assume u ∈ H so the minimality of h reduces to
check that u = h. Since ch − u is harmonic and nonnegative, the maximum principle implies that
either u = ch (hence c = 1 and u = h) or ch − u > 0 in M . Arguing by contradiction, assume the
last inequality holds. Evaluating at p, we have c > 1. Now consider the functions u, ch−u

c−1 , both in
H. Since 1

c ∈ (0, 1) and
1
c
u +

(
1 − 1

c

)
ch − u

c − 1
= h,

we have written h as a non trivial convex linear combination of u, ch−u
c−1

, which contradicts the
extremality of h. �

Next we give a idea of the proof of Theorem 1.4. Reasoning by contradiction, we assume that our
properly embedded minimal surface M ⊂ R3 admits a nonconstant positive harmonic function and,
therefore, a minimal nonconstant positive harmonic function h. Let G be the group if isometries
of M acting discontinuously. Note that G can neither reduce to the identity map (otherwise M
has finite topology and so, it is recurrent by Theorem 1 in [9]), nor have rank one (in such a case
M is again recurrent, now by Theorem 1.3), nor have rank three (by Proposition 1.1). Hence, we
can assume M is doubly periodic.

If the harmonic function h descended to M/G we would find a contradiction, since M/G is
easily proved to be recurrent. The condition for h to descend is that h ◦ φ = h for all isometry
φ ∈ G. Instead of proving this equality, we will show a weaker condition, namely

(3) h ◦ φ = c h in M,

where c is a positive number depending on φ ∈ G. This equality will imply that the sum of
log h with a certain coordinate function of M descends to M/G, and we will show that such
condition implies h is constant, which is the desired contradiction. The proof of equation (3)
follows by applying the minimality of h, provided one has proved that for any φ ∈ G, there exiss
c1 = c1(φ) > 0 such that

(4) h ◦ φ ≤ c1 h in M.

This inequality (4) will be proved in two steps: firstly on a compact set W ⊂ M such that the
closure of any component E of M − W is conformally a halfspace. Secondly, we will work on any
such a component E, propagating the inequality (4) from ∂E to the whole end E. Next we enter
into the details of what we have briefly explained.

Lemma 5.3. Let Γ be a proper discontinuous group of PSl(2, R), Γ1 a normal subgroup of Γ and
φ a deck transformation of the covering H/Γ1 → H/Γ. Suppose that there exists c = c(φ) > 0 such
that dh(φ(x), x) ≤ c, for all x ∈ H/Γ1 (here dh denotes hyperbolic distance). Then, every positive
minimal harmonic function h on H/Γ1, satisfies that h ◦ φ is a multiple of h.

Proof. Given x ∈ H/Γ1, fix a compact set K ⊂ H/Γ1 such that x, φ(x) ∈ K. Using the Harnack’s
inequality, we have

h(φ(x)) ≤ sup
K

h ≤ c1 inf
K

h ≤ c1 h(x),

where c1 > 0 depends only on dh(φ(x), x) (reference??). Since dh(φ(x), x) is bounded in x ∈ M ,
we obtain a number c2 > 0 such that h ◦φ ≤ c2h. Now the lemma follows from the fact that h ◦φ
is positive harmonic and h is minimal. �
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The main hypothesis in Lemma 5.3 is to have a control on the hyperbolic distance in H/Γ.
When H/Γ is the underlying Riemann surface of a complete minimal surface of bounded Gaussian
curvature in a complete flat three-manifold, then it will be enough to bound the intrinsic distance
on the surface, as stated in the next result due to Yau [17].

Lemma 5.4. Let ds2 be a complete metric on a surface H/Γ, being conformal to the hyperbolic
metric ds2

−1. Assume the Gauss curvature of ds2 satisfies K ≥ −c for some c > 0. Then

ds2
−1 ≤ c ds2.

Lemma 5.5 (Representation formula). Let Σ be a parabolic Riemann surface with boundary and
u ≥ 0 a continuous function on Σ, harmonic in Σ − ∂Σ. Let µp, p ∈ Σ, be the harmonic measure
on ∂Σ. Then, there exists a continuous function v : Σ → [0,∞), harmonic on Σ − ∂Σ such that
v = 0 on ∂Σ and

u(p) =
∫

∂Σ

u dµp + v(p) ∀p ∈ Σ − ∂Σ.

Proof. Let ϕ : Σ → [0, 1] be a smooth cut-off fuction and uϕ the bounded continuous function on
Σ (harmonic on Σ − ∂Σ) given by

uϕ(p) =
∫

∂Σ

ϕ u dµp.

Take an exhaustion of Σ by smooth relatively compact domains Ωk ↗ Σ. Let uk be the solution
of the Dirichlet problem 




∆uk = 0 in Ωk

uk = ϕ u in ∂Ωk ∩ ∂Σ
uk = 0 in ∂Ωk − ∂Σ.

Then uk ≤ ϕu (which is bounded). Since u ≥ 0, then {uk}k is monotonically nondecreasing. Hence
limk uk exists and is a bounded harmonic function. Since Σ is parabolic, limk uk is determined by
its boundary values, which coincide with those of uϕ. As uϕ is also bounded, we have limk uk = uϕ.
As uk ≤ u, taking limits we have uϕ ≤ u, i.e.

∫

∂Σ

ϕ u dµp ≤ u(p) ∀p ∈ Σ − ∂Σ.

Now take ϕ → 1, hence Fatou’s lemma implies u is µp-integrable in ∂Σ and

u1(p) :=
∫

∂Σ

u dµp

is a harmonic function that coincides with u in ∂Σ, and u1 ≤ u. Now our lemma follows from
taking v = u − u1. �

Lemma 5.6. In the situation of Lemma 5.5, assume Σ is conformally the halfplane {(x, y) | y ≥ 0}.
Then the function v in the representation formula is a multiple of y.

Proof. Let v : Σ → [0,∞) a continuous function, harmonic on {y > 0} and vanishing at {y = 0}.
By the boundary maximum principle, the positivity of v implies ∂v

∂y
> 0 along the boundary. Let

v∗ be its harmonic conjugate function, so f = v + iv∗ is holomorphic and can be extended by
Schwarz reflection to the whole complex plane. Furthermore, f applies monotonically the real axis
into the the imaginary axis, and no points of C − R can be applied by f into iR. Therefore f is
linear and v is linear as well. �
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Remark 5.7. Is Lemma 5.6 true for the intersection of a properly immersed minimal surface with
a halfspace and the harmonic function given by the height function over its boundary? If the answer
is yes, then the proof of Theorem 1.4 below can be generalized to the case of bounded curvature (but
M/G may have infinite topology).

Proof of Theorem 1.4. The only case that remains open is when M ⊂ R3 is a properly em-
bedded doubly periodic minimal surface, invariant by the group G generated by two independent
translations, which we can assume horizontal. Suppose M admits a nonconstant positive har-
monic function h. By Proposition 5.2, we can assume h is minimal. Represent conformally the
finite topology quotient surface M/G by H/Γ with Γ = π1(M/G) (which is a normal subgroup
of PSl(2, R)). Thus, the lifted surface M is conformally H/Γ1 where Γ1 = π1(M ) is a normal
subgroup of Γ.

Claim 1. For all φ ∈ Γ, there exists c = c(φ) > 0 such that h ◦ φ = c h in M .

Proof of Claim 1. Fix φ ∈ Γ. If φ ∈ Γ1, then h ◦ φ = φ since h is defined on M = H/Γ1.
Thus we can assume φ ∈ Γ − Γ1, which implies φ can be seen as a translation in R3 by one of the
(horizontal) period vectors of M . Since h is positive, minimal and harmonic, the claim follows if
we prove that h ◦ φ ≤ c1 h in M , for some c1 > 0.

Consider a closed horizontal slab W ⊂ R3 of finite width. Since M ∩ W is invariant by φ and
W/G is compact, the function x ∈ M ∩ W 7→ dM (φ(x), x) is bounded (here dM denotes intrinsic
distance on M ). Since M̃ has bounded curvature, Lemma 5.4 implies that the hyperbolic metric
on M is bounded from above by a multiple of the induced metric on M (i.e. the restriction to M
of the usual inner product in R3). Thus, the function x ∈ M ∩W 7→ dh(φ(x), x) is bounded, where
dh denotes hyperbolic distance. In this situation, the proof of Lemma 5.3 gives that

(5) (h ◦ φ)(x) ≤ c1 h(x) for all x ∈ M ∩ W

for some c1 > 0.
We next propagate the inequality (5) to the ends of M . Let E be the representative of an

end of M , obtained after intersection of M with one of the closed upper halfspaces {x3 ≥ a} in
the complement of W (for lower halfspaces the argument is the same). Note that E is parabolic,
conformally a halfspace. Applying Lemmas 5.5 and 5.6, we find c2 ≥ 0 such that

(6) h(p) =
∫

∂E

h dµp + c2(x3(p) − a), for all p ∈ E − ∂E,

where dµp stands for the harmonic measure on ∂E associated to p ∈ E − ∂E. Note that φ leaves
E invariant. For p ∈ E − ∂E, equation (6) gives

h(φ(x)) =
∫

∂E

h dµφ(p) + c2(x3(φ(p)) − a) =
∫

φ(∂E)

h dµφ(p) + c2(x3(p) − a)

=
∫

∂E

(h ◦ φ) φ∗dµφ(p) + c2(x3(p) − a) =
∫

∂E

(h ◦ φ) dµφ(p) + c2(x3(p) − a)

(5)
≤ c1

∫

∂E

h dµφ(p) + c2(x3(p) − a)
(?)

≤ c1

[∫

∂E

h dµφ(p) + c2(x3(p) − a)
]

(6)
= c1 h(p)

where in (?) we have used that c1 can be assume to be greater than or equal to 1. Now Claim 1
is proved.

Claim 2. h is constant (which is a contradiction).

Proof of Claim 2. Take generators φ1, φ2 of G. Then Claim 1 implies log(h ◦φi) = logh + log ci

for certain ci > 0, i = 1, 2. Since the periods of M in the directions of the translations φ1, φ2 are
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independent, elementary linear algebra gives a linear combination x of the coordinate functions
x1, x2 associated to such period vectors, such that the periods of x in φ1, φ2 coincide with those of
log h. Then the function v = log h − x descends to M/G. Since h = ev+x is harmonic on M , we
have

∆v + |∇v + ∇x|2 = 0 in M/G.

Take a smooth nonnegative compactly supported function ϕ on M/G. Then
∫

M/G

ϕ2|∇v + ∇x|2 = −
∫

M/G

ϕ2∆v = −
∫

M/G

ϕ2∆(v + x) = 2
∫

M/G

ϕ〈∇ϕ,∇v + ∇x〉

≤ 2
∫

M/G

ϕ|∇ϕ||∇v + ∇x| ≤ 2

(∫

M/G

ϕ2|∇v + ∇x|2
)1/2(∫

M/G

|∇ϕ|2
)1/2

.

After simplifying, we have

(7)
∫

M/G

ϕ2|∇v + ∇x|2 ≤ 4
∫

M/G

|∇ϕ|2.

Given 0 < r < s, take the cut-off function ϕ on M/G so that

ϕ =





1 in (M/G) ∩ {|x3| ≤ t}
|x3|−s

s−t
in (M/G) ∩ {t ≤ |x3| ≤ s}

0 in (M/G) ∩ {s ≤ |x3|}.
Then (7) gives
∫

(M/G)∩{|x3|≤t}
|∇v + ∇x|2 ≤ 4

(s − t)2

∫

(M/G)∩{t≤|x3|≤s}
|∇x3|2

=
4

(s − t)2

∫

(M/G)∩{t≤|x3|≤s}
div(x3∇x3)

=
4

(s − t)2

(
s

∫

(M/G)∩{|x3|=s}

∂x3

∂η
− t

∫

(M/G)∩{|x3|=t}

∂x3

∂η

)

=
4

(s − t)2
(s + t) Flux(x3),

where Flux(x3) is the scalar flux of x3 along (M/G) ∩ {|x3| = s} (which does not depend on s by
the divergence theorem) Taking s → ∞, we conclude ∇v + ∇x = 0 in (M/G) ∩ {|x3| = t} (and
then in all of M/G), i.e. v + x is constant in M/G. Since h = ev+x, then h is also constant, a
contradiction. This concludes the proof of Claim 2 and of Theorem 1.4. 2

Proof of Theorem 1.5. Let Λ = {pi | i ∈ Z} be a quasiperiodic sequence of points in the cylinder
S1 × R. This means that for any divergent sequence of vertical translations tn : S1 × R → S1 × R,
the sequence {tn(Λ)}n has a subsequence that converges to an infinite discrete set Λ∞ ⊂ S1 × R.
Let M = (S1 × R) − Λ and π : M̃ → M a cyclic covering of M . In particular, we have

• The covering is regular, with transformation group Aut(π) = Z.
• If {tn} is a divergent sequence of translations of S1 × R, then (after extracting a subse-

quence) the surfaces Mn := M − tn(Λ) converge to (S1 × R) − Λ∞ and {πn : M̃n → Mn}n

converges to a cyclic covering π∞ : M̃∞ → M∞, where Λ∞ = limn tn(Λ).

By contradiction, suppose there exists a nonconstant positive harmonic function h : M̃ → (0,∞).
By Proposition 5.2, we can assume that h is minimal. Let φ be a generator of Aut(π) and ds2

h the
hyperbolic metric on M̃ .
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Note that there exists c > 0 such that dh(x, φ(x)) ≤ c for all x ∈ M̃ (otherwise, we would have
a sequence of points xn ∈ M̃ such that dh(xn, φ(xn)) → ∞ as n → ∞; taking limits on M̃ −xn we
will find a contradiction). By Lemma 5.3, we have h ◦ φ = c1h for some c1 > 0. By assumption,
there exists a point pi ∈ Λ such that a small embedded loop around pi lifts to an open arc in M̃ .
Then c1 = 1 by the argument in McKean & Sullivan [6] page 207. Therefore, h descends to M ,
which is recurrent (because M can by obtained by gluing the parabolic surfaces (S1 × (−∞, 0])−Λ
and (S1 × [0,∞)) − Λ by their common compact boundary; such surfaces are parabolic by the
same proof that gives that a properly immersed minimal surface intersected with a halfspace is
parabolic). Thus h is constant, a contradiction. 2

Remark 5.8. If in the conditions of Theorem 1.5 we suppose that for all i ∈ Z, the lift of any
small embedded loop gives a closed loop in M̃ , then the only closed loop in M that lifts to an open
arc is the generator of the homology of the cylinder S1 ×R, and thus M̃ is R2 minus a sequence of
points which is periodic in one direction and quasiperiodic in another direction. This surface M̃
would also be recurrent to find a contradiction and then extend Theorem 1.5 to the general case of
a cyclic covering of a cylinder minus a quasiperiodic sequence of points. Nevertheless, the case that
appears when having a singular minimal lamination as a limit of a sequence of embedded minimal
surfaces is the one in the statement of Theorem 1.5.

6. a-stable minimal surfaces.

Proof of Proposition 1.6. Let M be an a-stable minimal surface in a complete flat three-manifold
N . Recall that Fischer-Colbrie and Schoen proved (see Theorem 1 in [2]) that a-stability for an
orientable minimal surface M is equivalent to the existence of a positive solution u of the equation
∆u−aKu = 0 on M . Since N is flat, then K is nonpositive and so, u is superharmonic. If we assume
that M is not flat, then u cannot be constant. Since the existence of such a nonconstant positive
superharmonic function on M is equivalent to the property that M is transient for Brownian
motion, our proposition is proved. 2

Proof of Theorem 1.7. Suppose M is a complete, orientable, not totally geodesic, a-stable
minimal surface with finite genus in a complete, orientable, flat three-manifold N .

If M does not have bounded curvature, then the local picture theorem on the scale of curvature
(see Theorem 1.3 —CHECK THE REFERENCE— in [8]), produces a sequence of rescaled compact
subdomains of M obtained by intersection with appropriate extrinsic balls of N , which converge Ck

on compact subsets and with multiplicity one to a connected properly embedded minimal surface
M∞ ⊂ R3 with ~0 ∈ M∞, |KM∞ | ≤ 1 on M∞ and |KM∞ |(~0) = 1 (here |KM∞ | denotes the absolute
Gaussian curvature of M∞). So, after possibly replacing M by such a local picture dilation limit
on the scale of curvature, we can assume that M has bounded curvature (the a-stability property
is preserved under smooth dilation limits). By Proposition 1.6, to obtain a contradiction we just
need to prove that M is recurrent for Brownian motion.

Since M is a complete embedded minimal surface of bounded curvature in a flat three-manifold
N and M is not totally geodesic, then M is proper (the closure of M is a minimal lamination L
of bounded curvature of N ; if M were not proper, then L would have a limit leaf L and both L
and L would lift to a similar nonflat minimal lamination of R3 with bounded curvature and a limit
leaf, which contradicts Theorem 1.6 in [13]).

If N is R3, then M is recurrent for Brownian motion because it is properly embedded with finite
genus (see Theorem 1 in [9]). If M has finite topology and N is not simply connected, then M has
finite total curvature (Meeks and Rosenberg [12]), and so, M is recurrent for Brownian motion.
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Assume now that M has finite genus, infinite topology, and N is not R3. After lifting to a finite
cover, we may assume that N is R3/Sθ, R2 × S1 or T2 ×R, where Sθ is a screw motion symmetry
of infinite order and T2 is a flat two-torus. By the main theorem in [7], any properly embedded
minimal surface in R3/Sθ has a finite number of ends, and so, we may assume that this case for N
does not occur. Since a properly embedded minimal surface of bounded curvature in a complete
flat three-manifold has a fixed size embedded regular neighborhood whose intrinsic volume growth
is comparable to the intrinsic area growth of the surface (i.e. the ratio of both growths is bounded
above and below by positive constants), then the intrinsic area growth of M is at most quadratic
since the volume growth of R2 × S1 and of T2 × R is at most quadratic; this result on existence
of regular neighborhoods appears in [16] and also in [10]. Since M has at most quadratic area
growth, it is recurrent for Brownian motion ([3]). This completes the proof of Theorem 1.7. 2

Following the lines in former sections, we are interested in natural relations between covering
maps and the notion of a-stability. Some of these relations are contained in the following result.

Lemma 6.1 (a-Stability Lemma). Let M ⊂ N3 be a complete two-sided minimal surface in a
complete flat three-manifold.

(1) If M is a-stable, then any covering space of M is also a-stable.
(2) If M is a-unstable and M̃ is a covering space of M such that the components of the inverse

image of each compact subdomain of M have subexponential area growth, then M̃ is also
a-unstable (for example, if M̃ is a finitely generated abelian cover, then it satisfies this
subexponential area growth property)

Proof. As a-stability is characterized by the existence of a ositive solution on M of ∆u−aKu = 0,
then item (1) follows directly by lifting u to M̃ .

We now consider statement (2). First note that since M is a-unstable, there exists a smooth
compact subdomain Ω ⊂ M such that the first eigenvalue λ1 of the a-stability operator ∆− aK is
negative. Denote by v the first eigenfunction of the a-stability operator for Ω with zero boundary
values. Therefore, ∆v − aKv + λ1v = 0, with λ1 < 0.

Let Ω̃ ⊂ M̃ be the pullback image of Ω by the covering map π : M̃ → M and u = v ◦π the lifted
function of v on Ω̃. Thus

(8) ∆u− aKu + λ1u = 0 in Ω̃, and u = 0 in ∂Ω̃.

Let ϕ be a compactly supported smooth function on M̃ . Using equation (8) we obtain, after several
integration by parts,

∫

Ω̃

(
|∇(ϕu)|2 + aKϕ2u2

)
=
∫

Ω̃

(
−ϕu∆(ϕu) + aKϕ2u2

)

=
∫

Ω̃

(
−ϕ2u∆u− 2〈∇ϕ,∇u〉ϕu− u2ϕ∆ϕ + aKϕ2u2

)
=

∫

Ω̃

(
λ1ϕ

2u2 − 1
2
〈∇ϕ2,∇u2〉 − u2ϕ∆ϕ

)
=
∫

Ω̃

(
λ1ϕ

2u2 + |∇ϕ|2u2
)
.

Reasoning by contradiction, assume that M̃ is a-stable. Then the last integral is nonnegative, and
we conclude that

(9) −λ1

∫

Ω̃

ϕ2u2 ≤
∫

Ω̃

|∇ϕ|2u2.
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Denote by r : M̃ → [0,∞) the Riemannian distance to a fixed point q ∈ M̃ and B(R) = {r ≤ R}
the corresponding intrinsic geodesic ball. Consider the cut off Lipschitz function ϕR, defined by

ϕR =





1 in B(R),
0 in M̃ − B(R + 1),
R + 1 − r in B(R + 1) − B(R).

By a standard density argument, we can take ϕ = ϕR in (9) and obtain, for almost any R > 0,

−λ1

∫

Ω̃∩B(R)

u2 ≤
∫

Ω̃∩B(R+1)

u2 −
∫

Ω̃∩B(R)

u2,

which is impossible as the hypothesis implies that the function

R 7→
∫

Ω̃∩B(R)

u2.

has subexponential growth. This contradiction proves the lemma. �

Our next goal is to prove Theorem 1.9 stated in the introduction. To do this, we first recall
some definitions and results from [8]. A dilation d : R3 → R3 is a conformal diffeomorphism that
can be expressed uniquely by d(x) = λ(x − p) for some p ∈ R3 and positive number λ. The space
D(M ) of dilation limits of a properly embedded minimal surface M ⊂ R3 is the set of properly
embedded nonflat minimal surfaces Σ ⊂ R3 which are smooth limits on compact sets in R3 of a
divergent sequence of dilations of M (a sequence of dilations dn(x) = λn(x − pn) is divergent, if
pn → ∞ as n → ∞). A surface Σ ∈ D(M ) is a minimal element if D(Σ) is a minimal (smallest)
D-invariant subset of D(M ) (a subset ∆ ⊂ D(M ) is D-invariant if D(Σ′) ⊂ ∆ whenever Σ′ ∈ ∆).
The Dynamics Theorem for minimal surfaces (Theorem 1.7 in [8]) (CHECK THE REFERENCE)
states that if M does not have finite total curvature and if no surface in D(M ) has finite total
curvature, then there exists a minimal element Σ ∈ D(M ) which has bounded curvature and
Σ ∈ D(Σ). In particular, for such a Σ, there exists a divergent sequence of dilations dn, such that
the surfaces Σ(n) = dn(Σ) converge smoothly to Σ on compact subsets of R3 and so, we call such
a Σ dilation-periodic.

Proof of Theorem 1.9. Let M be a complete embedded two-sided nonflat a-stable minimal
surface in a complete flat three-manifold. By Theorem 1.7, M must have infinite genus. Since
a-stability is preserved under homotheties, limits and taking finitely generated abelian covers (by
part (2) of Lemma 6.1), the local picture theorem on the scale of curvature implies that there
exists a nonflat properly embedded a-stable minimal surface M1 ⊂ R3 of bounded curvature. By
Theorem 1.7, such a surface M1 must have infinite genus. In particular, M1 cannot have finite
total curvature. Now consider the set D(M1) of dilation limits of M1. Since any surface in D(M1)
is a-stable, the above argument shows that no surface in D(M1) has finite total curvature. By the
Dynamics Theorem for minimal surfaces, there exists a minimal element Σ ∈ D(M1) with bounded
Gaussian curvature, which is dilation periodic. Since Σ ∈ D(M1), then Σ is a-stable (so it has
infinite genus by Theorem 1.7). To finish the proof, in only remains to check that no such Σ can
be invariant by a translation.

Reasoning by contradiction, assume Σ is invariant by a translation of vector T ∈ R3−{~0}. Since
the volume growth of R3/T is quadratic and the proper surface Σ/T ⊂ R3/T admits a regular
neighborhood of positive radius, then Σ/T has at most quadratic area growth, and thus, it is
recurrent for Brownian motion. In particular, Σ/T is a-unstable. By part (2) of Lemma 6.1, we
deduce that Σ is also a-unstable, a contradiction. Now Theorem 1.9 is proved. 2
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If we do not assume embeddedness, then there are nonflat complete a-stable surfaces in R3. The
following lemma give us a way to obtain some of these.

Lemma 6.2. If an orientable minimal surface M in R3 is simply connected and its Gauss map
omits three spherical values, then M is a-stable for some a > 0 depending only on the omitted
values.

Proof. We can assume that M is not flat, hence M is conformally the unit disk (since the Gauss
map of M omits three values). So, we can consider on M the complete hyperbolic metric ds2

h

of constant curvature −1. It is known that for any compactly supported smooth function u we
have

∫
M |∇hu|2dAh ≥ 1

4

∫
M u2 dAh, where the length |∇hu| of the gradient of u and the measure

dAh are taken with respect to the metric ds2
h. On the other hand, as the Gauss map N omits

3 values, we have that |∇hN | ≤ c for some constant c depending only on the omitted values,
see [15]. Therefore, we obtain that

∫
M

|∇hu|2dAh ≥ 1
4c2

∫
M

|∇hN |2u2 dAh, which, due to the
conformal invariance of the Dirichlet integral and using that |∇N |2 = −2K, implies that M is
(4c2)−1-stable. �

For instance, the universal covering M̃ of any doubly periodic Scherk minimal surface M ⊂ R3

is a-stable for some a > 0. Nevertheless, M itself is a-unstable for all values a > 0. In fact, this
property remains valid for any doubly periodic minimal surface, as shown in the next result.

Proposition 6.3. Let M ⊂ R3 be a properly immersed doubly periodic nonflat minimal surface.
Then, M is a-unstable for any a > 0.

Proof. Let G be the rank two group of translations leaving M invariant. Then M/G is a properly
immersed minimal surface in R3/G = T2 × R. Since the natural height function h : T2 × R → R
restricts to a proper harmonic function on the ends of M/G, we deduce that M/G is recurrent
for Brownian motion. By Proposition 1.6, M/G is a-unstable. Since the covering M → M/G is
finitely generated and abelian, part (2) of Lemma 6.1 implies that M is also a-unstable. �

Note also that any surface properly embedded doubly periodic nonflat minimal surface M ⊂ R3

with finite topology in the quotient in T2 × R is transient (by Theorem 1.3), which implies that
there exists a nonconstant positive superharmonic function u on M , although such u cannot be a
solution of ∆u = aKu by Proposition 6.3. Finally, although M is not recurrent, it comes close to
satisfying that condition, since positive harmonic functions on it are constant (by Theorem 1.4).
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