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1 Introduction.

Recently, Meeks, Perez and Ros [5] proved the following remarkable local removable sin-
gularity result for a minimal lamination of a Riemannian three-manifold N: If S C N
is a closed countable set and £ is a minimal lamination of N — S which satisfies in a
punctured neighborhood W of each isolated point p of S a curvature estimate of the form
|Kcow|(z) d?(z,p) < C, then L extends to a minimal lamination £ of N. Here, K rqw (z)
is the Gaussian curvature function of the leaves of £ in W and d(x, p) is the distance func-
tion to p in N. By the Gauss equation, the above estimate on curvature can be replaced
by the estimate |Aznw|(x) d(z,p) < C’, where |A] is the norm of the second fundamental
form of the leaves of L.

In general, a minimal lamination £ of N — S fails to satisfy the above local curvature
estimate: |K,qw|d? < C around isolated points p € S. However, stable minimal surfaces
satisfy such an estimate by the curvature estimates of Schoen [10] and Ros [9]. It follows
that if L is a stable leaf of £, then the sublamination L, which as a set is the closure of
L in L, extends across the closed countable set S. Also, the sublamination of limit leaves
of £ can also be shown to satisfy the local curvature estimate, and so, this sublamination
extends across the set S (see [5] and [7] for details).

We note that the local removable singularity theorem in [5] depends strongly on the
embeddedness of the minimal surface leaves of the lamination £. In this paper, we extend
the above local removable singularity result for minimal laminations with a curvature
estimate to a different but related problem. For this related problem, there is a single
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isolated point p € N where we would like to extend an immersed minimal surface M
which satisfies some related curvature estimate at the point; however, we do not assume
the surface M is embedded and will only require that the extended surface M be a smooth
branched minimal surface. This result is contained in the following Theorems 1.3 and 1.4;
Theorem 1.3 describes a curvature estimate for certain stable minimal surfaces in R3.
Before stating these results, we make two definitions.

Definition 1.1 A minimal surface M in R? is locally complete outside of a point p € R?,
if p is not in the closure of OM and there exists a neighborhood W of p such that any
divergent path of finite length in M that has its limiting end point in W, must have p as
its limiting end point. If W can be taken to be R, then M is called complete outside of p.

Definition 1.2 A minimal surface M in R? is locally proper outside of p € R3, if p is
not in the closure of OM and there exists a neighborhood W of p such that each component
of M NW is proper in W — {p}; here, W denotes the closure of W.

We remark that if M is locally proper at p, then it is locally complete at p.

Theorem 1.3 (Improved Curvature Estimate) If M is an orientable stable minimal
surface in R? which is locally complete outside of a point p, then, for alle > 0, there exists
a § > 0 such that for the ball W = B(p,9), |[Apnw|(z) d(z,p) < e.

Theorem 1.4 (Extension Theorem) Suppose M is an orientable minimal surface in
R3 which is locally complete outside of a point p. If, for all € > 0, there exists a 6 > 0
such that for the ball W = B(p,d), |Amw|(z) d(z,p) < e, then each component C of
W N M is a simply-connected minimal surface with 0C C OW which satisfies one of the
following statements:

1. C is a compact minimal disk.

2. C is conformally a punctured disk which is properly immersed in W — {p}. In this
case, C extends smoothly across p to a smooth branched minimal disk C. If M is
locally proper at p, then statements 1 and 2 imply M extends smoothly across p as
a branched minimal surface.

3. C is conformally diffeomorphic to the closed upper halfspace {(x1,z2) | xo > 0}.
For positive t < 0, C intersects OB(p,t) transversely in a single complete curve and
0B(p,t) becomes orthogonal to C' as t approaches 0.

Suppose now that M is a properly immersed orientable stable minimal surface in a
punctured ball in R? with boundary on the boundary of the ball. In this case, Theorem 1.3
implies that M satisfies the curvature estimate hypothesis given in Theorem 1.4. Hence,



by properness, there exists some small closed subball B centered at the puncture such
that, outside the interior of B, M is a smooth compact surface and, inside B, M consists
of a finite number of compact disk components which satisfy item 1 in Theorem 1.4 and of
a finite number of punctured disk components C' which satisfy item 2 in Theorem 1.4 (by
properness, there are no components satisfying item 3 in Theorem 1.4). It then follows
from item 2 in Theorem 1.4 that M extends to a smooth branched minimal immersion of a
smooth compact surface M, where M = M —{p1, ..., p,} with the points {p1, ..., p,} corre-
sponding to the ends of the noncompact annular components of M N B. This consequence
is a classical result of Gulliver and Lawson.

Corollary 1.5 (Gulliver, Lawson [4]) If M is a properly immersed stable orientable
manimal surface in a punctured ball in R with the boundary of M contained in the bound-
ary of the balls, then M is conformally a finitely punctured compact Riemann surface M,
where M maps smoothly into R® and extends M as a compact branched minimal surface.

The Gulliver-Lawson paper [4] and the paper [5] by Meeks, Perez and Ros motivate the
results described in Theorems 1.3 and 1.4.

We prove Theorems 1.3 and 1.4 in Section 2, as well as their natural generalization
to Riemannian three-manifolds. In particular, we see that the Gulliver-Lawson result
Corollary 1.5 also holds in Riemannian three-manifolds.

Theorem 1.4 should hold in greater generality. Based on work in [5], I make the
following conjecture. For this conjecture, one generalizes in the natural way the notion of
“complete outside of a point” to the notion of “complete outside of a closed set”. This
conjecture is closely related to the Fundamental Removable Singularities Conjecture in
[5] for a minimal lamination in R® — A, where A is a closed set of zero one-dimensional
Hausdorff measure.

Conjecture 1.6 (Removable Singularity Conjecture for Stable Minimal Surfaces)
If N is a Riemannian three-manifold with nonnegative Ricci curvature and M is a sta-
ble immersed minimal surface in N which is complete outside of a closed set A of zero
one-dimensional Hausdorff measure, then M extends smoothly across A. In particular, if
N =R3 and M is connected and embedded, then M is a plane.

We remark that there exists a stable simply-connected minimal surface in hyperbolic
three-space H? (or in H? x R) which is complete outside of a closed set A consisting of a
single point; hence, some essentially nonnegative hypothesis on the curvature of NV in the
above conjecture is necessary.



2 The proofs of Theorems 1.3 and 1.4 in the manifold set-
ting.

We first recall a removable singularity result from [5], which we refer to as the Stability
Lemma (also see [1] for this result). For the sake of being self-contained, we repeat the
proof of this result here. The proof of the Stability Lemma is motivated by a similar
conformal change of metric argument that was first applied by Gulliver and Lawson in [4]
and by the proof of a similar lemma in [6].

Lemma 2.1 (Stability Lemma) Let L ¢ R® — {0} be a stable orientable minimal sur-
face which is complete outside the origin. Then, L is a plane.

Proof. 1t 0 ¢ L, then L is complete and so, it is a plane by the main theorem in any of
the papers [2, 3, 8]. Assume now that 0 € L. Let R denote the radial distance to the
origin and consider the metric g = Elg‘ g on L, where g is the metric induced by the usual
inner product (,) of R, Since (R® — {0},§) with § = F17<’> is isometric to S?(1) x R,
where S%(1) is the unit two-sphere, our definition of complete outside of a point forces
(L,3) C (R® —{0},3) to be complete.

We now check that (L, g) is flat. The Laplacians and Gauss curvatures of g, g are related
by the equations A = R?A and K = R?*(Kp + Alog R). Since Alog R = %VZRH% >0,

~A+ K =RY-A+Kp+AlogR) > R*(—A + Kp).

Since K7, < 0 and (L, g) is stable, —A + K > —A + 2K, > 0, and so, ~A+K >0on
(L,g). As g is complete, the universal covering of L is conformally C (Fischer-Colbrie and
Schoen [3]). Since (L, g) is stable, there exists a positive Jacobi function v on L. Passing
to the universal covering E, At = 2K;u < 0, and so, the lifted function u is a positive
superharmonic on C, and hence constant. Thus, 0 = Au — 2K;u = —2Ku on L, which
means Ky = 0. O

Assume now that M is an orientable stable minimal surface in a three-manifold N
which is complete outside of a point p € N. We first prove the curvature estimate in
Theorem 1.3 in the three-manifold N setting. In other words, the following assertion
holds.

Assertion 2.2 For all € > 0, there exists a 6 > 0 such that for the ball W = B(p,?),
|Ariaw | () d(x,p) < e, where |A| is the norm of the second fundamental form of M.

Proof. Let € > 0. If the assertion fails, then there exists a sequence of points {p,}, C M
which converges to p and such |A|(pn) d(pn,p) > €. Choose a small compact extrinsic



metric ball B centered at p of small fixed small radius rg which is the image of a fixed size
ball of radius 7o in 7,,/N under the exponential map. By curvature estimates for stable
minimal surfaces, |Aynp|(x)d(z,p) < Cy, for some constant Cj.

Let A\, = m. Consider the metrically expanded balls B(n) = A\, B of radius \,,rg.
When viewed in geodesic coordinates centered at the origin p in B(n), these balls converge
uniformly to R as n — oco. Define the related surfaces M(n) = A\, (BN M) C B(n) which
we may consider to lie in R3. Let p,, denote the points A\pp, € 82(1) C R? and assume
that the sequence {p,}, converges to a point ¢ € S*(1). Since the surfaces M(n) have
uniformly bounded second fundamental form outside of any fixed neighborhood of the
origin, then after choosing a subsequence, there exists an immersed minimal surface M
in R? — {0} which is a limit of compact domains of M(n) all passing through the points
pn, and with ¢ € M. The surface M, can be chosen to satisfy the following statements:

1. For some positive constant Co, |Ar|(z) d(z,0) < Cy and |Ap |(q) > e.
2. M, is complete outside of 0.
3. M is stable.

The construction of M is standard but, for the sake of completeness, we briefly sketch
the proof of its existence. Since the second fundamental forms of M(n) N (R* — B(3))
are uniformly bounded, there exists a fixed § € (0, i) such that the intrinsic J-disks
Bir(n)(Pn,0) are graphs of gradient at most 1 over their tangent planes and are area
minimizing in B(n) € R?® (limit coordinates). A subsequence of these disks converges
to an area-minimizing minimal disk D(q,d) centered at ¢ € S?(1) of radius § and with

|Ap@p,s)l(g) > €. Since the M(n) have uniformly bounded second fundamental forms

on compact subsets of R? — {0}, the analytic disk D(q,) lies on a maximal minimally
immersed surface My, C R* — {0} which satisfies the curvature estimate given in item
1 above. Items 2 and 3 follow from this definition of M., and the fact that the M(n)
have positive Jacobi functions which, when appropriately normalized and after choosing
a subsequence, yield a positive limit Jacobi function on the limit surface M,,. However,
the existence of M, contradicts the Stability Lemma, which proves Assertion 2.2 O

We will now apply the curvature estimate in Assertion 2.2 to describe the geometry of
M very close to p. Assume from this point on that M satisfies this curvature estimate but
18 not necessarily stable and we will prove Theorem 1.4 in the three-manifold N setting.

Since M C N — {p} is complete outside of p, by definition (suitably extended to the
general ambient setting) there exists a neighborhood W of p in N such that any divergent
path of finite length in M with limiting point in W has its end point at p. Given € > 0,
let § > 0 be the related radius given by Assertion 2.2. We can assume that the extrinsic
ball B(p,d) is contained in W. Consider geodesic coordinates in B(p,d), defined out to



distance §. Next we will describe the two possibilities that may occur after choosing a
possibly smaller 4.

Assertion 2.3 For any fized 7 € (0,1], there is a small 6 > 0 such that the following
statements hold:

1. If the extrinsic distance function d: N — [0,00) to the point p, restricted to a compo-
nent C' of M N B(p,?), has a critical point on the interior of C, then C' is a compact
disk with 0C C 0B(p,9).

2. If d|¢ has no critical points on a component C of M N B(p,d), then the angles
between the tangent planes to C' and the radial geodesics in B(p, ) centered at p are
less than 7. Furthermore, fort <, C N OB(p,t) is a connected immersed complete
noncompact curve of geodesic curvature less than % in this sphere. In particular, C

18 moncompact.

Proof. Let ¢ = %. By Assertion 2.2, there exists a 6 > 0 so that the absolute values of
principal curvatures of a point of M N B(p,d) are less than half the absolute values of
principal curvatures of the metric spheres in B(p,d) centered at p and passing through
the point. It follows that the distance function d to the point p restricted to M N B(p, 9)
has only critical points of index 0. In particular, if x € M N B(p,d) is a critical point of
d|ps, then the component C(x) of M N B(p,d) containing z lies in B(p,d) — B(p,d(x))
and away from any intrinsic small neighborhood of x in C'(x), the tangent planes to C(z)

make an angle uniformly bounded away from 7 with the radial geodesics. Otherwise, a

small perturbation d of d has two critical points of index zero on C(z) and no critical
points of index 1 or 2. By elementary Morse theory, C(z) is not connected, which is a
contradiction. In particular, d|¢(,) has a unique critical point and C(z) is a compact disk
with 0C(xz) C 0B(p,d). This proves the first item in the statement of the assertion.

The proof of the second item of Assertion 2.3 follows from a similar argument. Note
that if a component C of MNB(p, §) is almost orthogonal to the spheres dB(p,t),0 < t < J,
then the curvature estimate in Assertion 2.2 gives the desired estimate on the geodesic
curvature and connectedness of C'N OB(p,t). Assume now that d¢c has no critical points.

If the component C' were compact, then d|c would have a minimal value at an interior
point of C; this follows from our initial assumption that B(p,0) C W and M N W is
“complete” except at p. Since we are assuming that d|c has no critical points, C' is
noncompact. Assume that ¢ is chosen small enough so that B(p,2d) C W and the same
curvature estimate hold in this bigger ball. Let C be the related component of M NB(p,26).
It follows that d| & also has no critical points since C' is not compact. This substitution
for a larger domain, coupled with our discussion of the previous case where d restricted
to a component had a critical point, shows that the angle that C' makes with the radial
geodesics is small with a better estimate when the second fundamental form of M has a



better curvature estimate. This better curvature estimate is the one given by Assertion 2.2.
It follows that if at a point ¢ very close to p and the component C' makes an angle greater
than 7 with the radial lines, then the component C(q) of C'N B(p, |q|) is compact and so,
d|c(g) has a local minimum. This means d|c has a critical point, which contradicts our
hypothesis for C. This completes the proof of Assertion 2.3. O

We now complete the proof of Theorem 1.4 in the Riemannian setting. By Asser-
tion 2.3, a component C of M N B(p,d) either satisfies item 1 in the statement of Theo-
rem 1.4 (with R3 replaced by N) or we may assume that C' is almost-orthogonal to dB(p, t)
for t € (0,6). In particular, C' is either diffeomorphic to S x [0, 00) (when OC' is compact)
or to R x [0,00) (when OC' is noncompact). If C' is compact, then a standard application
of the proof of the monotonicity formula for area (see, for example, the beginning of the
proof of Theorem 5.1 in [5]) shows that the lengths of the curves C N IB(p,t),0 <t <1,
are less than % for some constant Cy. If g denotes the metric on C, then the conformally
related and complete metric g = dlg g on C is a complete metric with linear area growth,
where d is the distance to p. This implies C' is conformally a punctured disk.

If OC is not compact, then a similar argument shows that the metric g = diz g is com-
plete and asymptotically flat away from its boundary, dC has bounded geodesic curvature
in the new metric and (C, g) has quadratic area growth. It follows that (C,g) embeds in
a complete surface of quadratic area growth and so, C has full harmonic measure. Since
C' is simply-connected with one boundary component, it is conformally the closed unit
disk D with a connected closed set of zero measure removed from its boundary. Since
the connected set in JD has measure zero, it must consist of a single point. Thus, C is
conformally equivalent to {(z1,z2) | z2 > 0}.

In the case C' is conformally D — {0} with finite area (from the monotonicity formula),
standard regularity theorems for conformal harmonic maps imply that the proper mapping
f:D — {0} = C — B(p,6) — {p} extends smoothly across p to a conformal branched
harmonic map f:D — B(p,§). This completes the proof of Theorem 1.4 in the manifold
setting N. O
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