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1 Introduction.

Recently, Meeks, Perez and Ros [5] proved the following remarkable local removable sin-
gularity result for a minimal lamination of a Riemannian three-manifold N : If S ⊂ N
is a closed countable set and L is a minimal lamination of N − S which satisfies in a
punctured neighborhood W of each isolated point p of S a curvature estimate of the form
|KL∩W |(x) d2(x, p) < C, then L extends to a minimal lamination L of N . Here, KL∩W (x)
is the Gaussian curvature function of the leaves of L in W and d(x, p) is the distance func-
tion to p in N . By the Gauss equation, the above estimate on curvature can be replaced
by the estimate |AL∩W |(x) d(x, p) < C ′, where |A| is the norm of the second fundamental
form of the leaves of L.

In general, a minimal lamination L of N − S fails to satisfy the above local curvature
estimate: |KL∩W |d

2 < C around isolated points p ∈ S. However, stable minimal surfaces
satisfy such an estimate by the curvature estimates of Schoen [10] and Ros [9]. It follows
that if L is a stable leaf of L, then the sublamination L, which as a set is the closure of
L in L, extends across the closed countable set S. Also, the sublamination of limit leaves
of L can also be shown to satisfy the local curvature estimate, and so, this sublamination
extends across the set S (see [5] and [7] for details).

We note that the local removable singularity theorem in [5] depends strongly on the
embeddedness of the minimal surface leaves of the lamination L. In this paper, we extend
the above local removable singularity result for minimal laminations with a curvature
estimate to a different but related problem. For this related problem, there is a single
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isolated point p ∈ N where we would like to extend an immersed minimal surface M
which satisfies some related curvature estimate at the point; however, we do not assume
the surface M is embedded and will only require that the extended surface M be a smooth
branched minimal surface. This result is contained in the following Theorems 1.3 and 1.4;
Theorem 1.3 describes a curvature estimate for certain stable minimal surfaces in R

3.
Before stating these results, we make two definitions.

Definition 1.1 A minimal surface M in R
3 is locally complete outside of a point p ∈ R

3,
if p is not in the closure of ∂M and there exists a neighborhood W of p such that any
divergent path of finite length in M that has its limiting end point in W , must have p as
its limiting end point. If W can be taken to be R

3, then M is called complete outside of p.

Definition 1.2 A minimal surface M in R
3 is locally proper outside of p ∈ R

3, if p is
not in the closure of ∂M and there exists a neighborhood W of p such that each component
of M ∩W is proper in W − {p}; here, W denotes the closure of W .

We remark that if M is locally proper at p, then it is locally complete at p.

Theorem 1.3 (Improved Curvature Estimate) If M is an orientable stable minimal
surface in R

3 which is locally complete outside of a point p, then, for all ε > 0, there exists
a δ > 0 such that for the ball W = B(p, δ), |AM∩W |(x) d(x, p) < ε.

Theorem 1.4 (Extension Theorem) Suppose M is an orientable minimal surface in
R

3 which is locally complete outside of a point p. If, for all ε > 0, there exists a δ > 0
such that for the ball W = B(p, δ), |AM∩W |(x) d(x, p) < ε, then each component C of
W ∩M is a simply-connected minimal surface with ∂C ⊂ ∂W which satisfies one of the
following statements:

1. C is a compact minimal disk.

2. C is conformally a punctured disk which is properly immersed in W − {p}. In this
case, C extends smoothly across p to a smooth branched minimal disk C. If M is
locally proper at p, then statements 1 and 2 imply M extends smoothly across p as
a branched minimal surface.

3. C is conformally diffeomorphic to the closed upper halfspace {(x1, x2) | x2 ≥ 0}.
For positive t ≤ δ, C intersects ∂B(p, t) transversely in a single complete curve and
∂B(p, t) becomes orthogonal to C as t approaches 0.

Suppose now that M is a properly immersed orientable stable minimal surface in a
punctured ball in R

3 with boundary on the boundary of the ball. In this case, Theorem 1.3
implies that M satisfies the curvature estimate hypothesis given in Theorem 1.4. Hence,
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by properness, there exists some small closed subball B centered at the puncture such
that, outside the interior of B, M is a smooth compact surface and, inside B, M consists
of a finite number of compact disk components which satisfy item 1 in Theorem 1.4 and of
a finite number of punctured disk components C which satisfy item 2 in Theorem 1.4 (by
properness, there are no components satisfying item 3 in Theorem 1.4). It then follows
from item 2 in Theorem 1.4 that M extends to a smooth branched minimal immersion of a
smooth compact surface M , where M = M−{p1, ..., pn} with the points {p1, ..., pn} corre-
sponding to the ends of the noncompact annular components of M ∩B. This consequence
is a classical result of Gulliver and Lawson.

Corollary 1.5 (Gulliver, Lawson [4]) If M is a properly immersed stable orientable
minimal surface in a punctured ball in R

3 with the boundary of M contained in the bound-
ary of the balls, then M is conformally a finitely punctured compact Riemann surface M ,
where M maps smoothly into R

3 and extends M as a compact branched minimal surface.

The Gulliver-Lawson paper [4] and the paper [5] by Meeks, Perez and Ros motivate the
results described in Theorems 1.3 and 1.4.

We prove Theorems 1.3 and 1.4 in Section 2, as well as their natural generalization
to Riemannian three-manifolds. In particular, we see that the Gulliver-Lawson result
Corollary 1.5 also holds in Riemannian three-manifolds.

Theorem 1.4 should hold in greater generality. Based on work in [5], I make the
following conjecture. For this conjecture, one generalizes in the natural way the notion of
“complete outside of a point” to the notion of “complete outside of a closed set”. This
conjecture is closely related to the Fundamental Removable Singularities Conjecture in
[5] for a minimal lamination in R

3 − A, where A is a closed set of zero one-dimensional
Hausdorff measure.

Conjecture 1.6 (Removable Singularity Conjecture for Stable Minimal Surfaces)
If N is a Riemannian three-manifold with nonnegative Ricci curvature and M is a sta-
ble immersed minimal surface in N which is complete outside of a closed set A of zero
one-dimensional Hausdorff measure, then M extends smoothly across A. In particular, if
N = R

3 and M is connected and embedded, then M is a plane.

We remark that there exists a stable simply-connected minimal surface in hyperbolic
three-space H

3 (or in H
2 × R) which is complete outside of a closed set A consisting of a

single point; hence, some essentially nonnegative hypothesis on the curvature of N in the
above conjecture is necessary.
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2 The proofs of Theorems 1.3 and 1.4 in the manifold set-

ting.

We first recall a removable singularity result from [5], which we refer to as the Stability
Lemma (also see [1] for this result). For the sake of being self-contained, we repeat the
proof of this result here. The proof of the Stability Lemma is motivated by a similar
conformal change of metric argument that was first applied by Gulliver and Lawson in [4]
and by the proof of a similar lemma in [6].

Lemma 2.1 (Stability Lemma) Let L ⊂ R
3 − {~0} be a stable orientable minimal sur-

face which is complete outside the origin. Then, L is a plane.

Proof. If ~0 /∈ L, then L is complete and so, it is a plane by the main theorem in any of
the papers [2, 3, 8]. Assume now that ~0 ∈ L. Let R denote the radial distance to the
origin and consider the metric g̃ = 1

R2 g on L, where g is the metric induced by the usual

inner product 〈, 〉 of R
3. Since (R3 − {~0}, ĝ) with ĝ = 1

R2 〈, 〉 is isometric to S
2(1) × R,

where S
2(1) is the unit two-sphere, our definition of complete outside of a point forces

(L, g̃) ⊂ (R3 − {~0}, ĝ) to be complete.
We now check that (L, g) is flat. The Laplacians and Gauss curvatures of g, g̃ are related

by the equations ∆̃ = R2∆ and K̃ = R2(KL + ∆ log R). Since ∆ log R = 2(1−‖∇R‖2)
R2 ≥ 0,

−∆̃ + K̃ = R2(−∆ + KL + ∆ log R) ≥ R2(−∆ + KL).

Since KL ≤ 0 and (L, g) is stable, −∆ + KL ≥ −∆ + 2KL ≥ 0, and so, −∆̃ + K̃ ≥ 0 on
(L, g̃). As g̃ is complete, the universal covering of L is conformally C (Fischer-Colbrie and
Schoen [3]). Since (L, g) is stable, there exists a positive Jacobi function u on L. Passing
to the universal covering L̂, ∆û = 2K

L̂
û ≤ 0, and so, the lifted function û is a positive

superharmonic on C, and hence constant. Thus, 0 = ∆u− 2KLu = −2KLu on L, which
means KL = 0. 2

Assume now that M is an orientable stable minimal surface in a three-manifold N
which is complete outside of a point p ∈ N . We first prove the curvature estimate in
Theorem 1.3 in the three-manifold N setting. In other words, the following assertion
holds.

Assertion 2.2 For all ε > 0, there exists a δ > 0 such that for the ball W = B(p, δ),
|AM∩W |(x) d(x, p) < ε, where |A| is the norm of the second fundamental form of M .

Proof. Let ε > 0. If the assertion fails, then there exists a sequence of points {pn}n ⊂ M
which converges to p and such |A|(pn) d(pn, p) ≥ ε. Choose a small compact extrinsic
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metric ball B centered at p of small fixed small radius r0 which is the image of a fixed size
ball of radius r0 in TpN under the exponential map. By curvature estimates for stable
minimal surfaces, |AM∩B |(x) d(x, p) < C0, for some constant C0.

Let λn = 1
d(pn,p) . Consider the metrically expanded balls B(n) = λnB of radius λnr0.

When viewed in geodesic coordinates centered at the origin p in B(n), these balls converge
uniformly to R

3 as n →∞. Define the related surfaces M(n) = λn(B ∩M) ⊂ B(n) which
we may consider to lie in R

3. Let p̃n denote the points λnpn ∈ S
2(1) ⊂ R

3 and assume
that the sequence {p̃n}n converges to a point q ∈ S

2(1). Since the surfaces M(n) have
uniformly bounded second fundamental form outside of any fixed neighborhood of the
origin, then after choosing a subsequence, there exists an immersed minimal surface M∞

in R
3 − {~0} which is a limit of compact domains of M(n) all passing through the points

pn and with q ∈ M∞. The surface M∞ can be chosen to satisfy the following statements:

1. For some positive constant C̃0, |AM∞
|(x) d(x,~0) ≤ C̃0 and |AM∞

|(q) ≥ ε.

2. M∞ is complete outside of ~0.

3. M∞ is stable.

The construction of M∞ is standard but, for the sake of completeness, we briefly sketch
the proof of its existence. Since the second fundamental forms of M(n) ∩ (R3 − B(1

2 ))
are uniformly bounded, there exists a fixed δ ∈ (0, 1

4 ) such that the intrinsic δ-disks
BM(n)(p̃n, δ) are graphs of gradient at most 1 over their tangent planes and are area

minimizing in B(n) ⊂ R
3 (limit coordinates). A subsequence of these disks converges

to an area-minimizing minimal disk D(q, δ) centered at q ∈ S
2(1) of radius δ and with

|AD(p,δ)|(q) ≥ ε. Since the M(n) have uniformly bounded second fundamental forms

on compact subsets of R
3 − {~0}, the analytic disk D(q, δ) lies on a maximal minimally

immersed surface M∞ ⊂ R
3 − {~0} which satisfies the curvature estimate given in item

1 above. Items 2 and 3 follow from this definition of M∞ and the fact that the M(n)
have positive Jacobi functions which, when appropriately normalized and after choosing
a subsequence, yield a positive limit Jacobi function on the limit surface M∞. However,
the existence of M∞ contradicts the Stability Lemma, which proves Assertion 2.2 2

We will now apply the curvature estimate in Assertion 2.2 to describe the geometry of
M very close to p. Assume from this point on that M satisfies this curvature estimate but
is not necessarily stable and we will prove Theorem 1.4 in the three-manifold N setting.

Since M ⊂ N − {p} is complete outside of p, by definition (suitably extended to the
general ambient setting) there exists a neighborhood W of p in N such that any divergent
path of finite length in M with limiting point in W has its end point at p. Given ε > 0,
let δ > 0 be the related radius given by Assertion 2.2. We can assume that the extrinsic
ball B(p, δ) is contained in W . Consider geodesic coordinates in B(p, δ), defined out to
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distance δ. Next we will describe the two possibilities that may occur after choosing a
possibly smaller δ.

Assertion 2.3 For any fixed τ ∈ (0, 1], there is a small δ > 0 such that the following
statements hold:

1. If the extrinsic distance function d:N → [0,∞) to the point p, restricted to a compo-
nent C of M ∩B(p, δ), has a critical point on the interior of C, then C is a compact
disk with ∂C ⊂ ∂B(p, δ).

2. If d|C has no critical points on a component C of M ∩ B(p, δ), then the angles
between the tangent planes to C and the radial geodesics in B(p, δ) centered at p are
less than τ . Furthermore, for t < δ, C ∩ ∂B(p, t) is a connected immersed complete
noncompact curve of geodesic curvature less than τ

t
in this sphere. In particular, C

is noncompact.

Proof. Let ε = 1
4 . By Assertion 2.2, there exists a δ > 0 so that the absolute values of

principal curvatures of a point of M ∩ B(p, δ) are less than half the absolute values of
principal curvatures of the metric spheres in B(p, δ) centered at p and passing through
the point. It follows that the distance function d to the point p restricted to M ∩B(p, δ)
has only critical points of index 0. In particular, if x ∈ M ∩ B(p, δ) is a critical point of
d|M , then the component C(x) of M ∩ B(p, δ) containing x lies in B(p, δ) − B(p, d(x))
and away from any intrinsic small neighborhood of x in C(x), the tangent planes to C(x)
make an angle uniformly bounded away from π

2 with the radial geodesics. Otherwise, a

small perturbation d̃ of d has two critical points of index zero on C(x) and no critical
points of index 1 or 2. By elementary Morse theory, C(x) is not connected, which is a
contradiction. In particular, d|C(x) has a unique critical point and C(x) is a compact disk
with ∂C(x) ⊂ ∂B(p, δ). This proves the first item in the statement of the assertion.

The proof of the second item of Assertion 2.3 follows from a similar argument. Note
that if a component C of M∩B(p, δ) is almost orthogonal to the spheres ∂B(p, t), 0 < t < δ,
then the curvature estimate in Assertion 2.2 gives the desired estimate on the geodesic
curvature and connectedness of C ∩ ∂B(p, t). Assume now that dC has no critical points.

If the component C were compact, then d|C would have a minimal value at an interior
point of C; this follows from our initial assumption that B(p, δ) ⊂ W and M ∩ W is
“complete” except at p. Since we are assuming that d|C has no critical points, C is
noncompact. Assume that δ is chosen small enough so that B(p, 2δ) ⊂ W and the same
curvature estimate hold in this bigger ball. Let C̃ be the related component of M∩B(p, 2δ).
It follows that d|

C̃
also has no critical points since C̃ is not compact. This substitution

for a larger domain, coupled with our discussion of the previous case where d restricted
to a component had a critical point, shows that the angle that C makes with the radial
geodesics is small with a better estimate when the second fundamental form of M has a
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better curvature estimate. This better curvature estimate is the one given by Assertion 2.2.
It follows that if at a point q very close to p and the component C makes an angle greater
than τ with the radial lines, then the component C(q) of C ∩B(p, |q|) is compact and so,
d|C(q) has a local minimum. This means d|C has a critical point, which contradicts our
hypothesis for C. This completes the proof of Assertion 2.3. 2

We now complete the proof of Theorem 1.4 in the Riemannian setting. By Asser-
tion 2.3, a component C of M ∩ B(p, δ) either satisfies item 1 in the statement of Theo-
rem 1.4 (with R

3 replaced by N) or we may assume that C is almost-orthogonal to ∂B(p, t)
for t ∈ (0, δ). In particular, C is either diffeomorphic to S

1× [0,∞) (when ∂C is compact)
or to R× [0,∞) (when ∂C is noncompact). If ∂C is compact, then a standard application
of the proof of the monotonicity formula for area (see, for example, the beginning of the
proof of Theorem 5.1 in [5]) shows that the lengths of the curves C ∩ ∂B(p, t), 0 < t ≤ 1,
are less than C0

t
for some constant C0. If g denotes the metric on C, then the conformally

related and complete metric g̃ = 1
d2 g on C is a complete metric with linear area growth,

where d is the distance to p. This implies C is conformally a punctured disk.
If ∂C is not compact, then a similar argument shows that the metric g̃ = 1

d2 g is com-
plete and asymptotically flat away from its boundary, ∂C has bounded geodesic curvature
in the new metric and (C, g̃) has quadratic area growth. It follows that (C, g̃) embeds in
a complete surface of quadratic area growth and so, C has full harmonic measure. Since
C is simply-connected with one boundary component, it is conformally the closed unit
disk D with a connected closed set of zero measure removed from its boundary. Since
the connected set in ∂D has measure zero, it must consist of a single point. Thus, C is
conformally equivalent to {(x1, x2) | x2 ≥ 0}.

In the case C is conformally D−{~0} with finite area (from the monotonicity formula),
standard regularity theorems for conformal harmonic maps imply that the proper mapping
f : D − {~0} = C → B(p, δ) − {p} extends smoothly across p to a conformal branched
harmonic map f : D → B(p, δ). This completes the proof of Theorem 1.4 in the manifold
setting N . 2
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