Definition of minimal surface

A surface f: M — R3 is minimal if:
o M has MEAN CURVATURE = 0.
o Small pieces have LEAST AREA.
o Small pieces have LEAST ENERGY.
o Small pieces occur as SOAP FILMS.
o Coordinate functions are HARMONIC.

o Conformal Gauss map
G: M — S?=CuU{x}.
MEROMORPHIC GAUSS MAP
D



Meromorphic Gauss map
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Weierstrass Representation

Suppose f: M c R3 is minimal,

g: M — CU{oc},
is the meromorphic Gauss map,

dh = dx3 + i % dx3,

is the holomorphic height differential. Then
P11 i /1
f(p) =R —|l—-—g,=| - 1| dh.
(p) e/2[g g,z(g+g),]d



Helicoid Image by Matthias Weber

M=C
dh = dz = dx+idy
g(z) = e”

Helicoid



Catenoid Image by Matthias Weber




Finite topology minimal surfaces with 1 end

Theorem (Meeks, Rosenberg)

A complete, embedded, simply-connected minimal
surface in R3 is a plane or a helicoid.

Theorem (Meeks, Rosenberg)

Every properly embedded, non-planar minimal
surface in R® with finite genus and one end has the
conformal structure of a compact Riemann surface
Mg of genus g minus one point, can be represented
by meromorphic data on Mg and is asymptotic to
a helicoid.




Finite topology minimal surfaces
Theorem (Collin)

IFMCR3isa properly embedded minimal surface with more
than one end, then each annular end of M is asymptotic to
the end of a plane or a catenoid. In particular, if M has
finite topology and more than one end, then M has finite total
Gaussian curvature.

Theorem (Meeks, Rosenberg)

Every properly embedded, non-planar minimal surface in R /G
with finite genus has the conformal structure of a compact
Riemann surface Mg of genus g punctured in a finite number
of points and can be represented by meromorphic data on Mg.
Each annular end is asymptotic to the quotient of a
half-helicoid (helicoidal), a plane (planar) or a half-plane
(Scherk type).




Properness of finite genus/topology examples

Theorem (Colding, Minicozzi)
A complete, embedded minimal surface of finite
topology in R3 s properly embedded.

Theorem (Meeks, Perez, Ros)

A complete, embedded minimal surface of finite
genus and a countable number of ends in R3 or in

R3/G is properly embedded.




Catenoid. Image by Matthias Weber

Key Properties:

@ In 1741, Euler discovered that when a catenary x; = cosh x3 is
rotated around the x3-axis, then one obtains a surface which
minimizes area among surfaces of revolution after prescribing
boundary values for the generating curves.

@ In 1776, Meusnier verified that the catenoid has zero mean
curvature.

@ This surface has genus zero, two ends and total curvature —4r.



Catenoid. Image by Matthias Weber

Key Properties:

@ Together with the plane, the catenoid is the only minimal surface of
revolution (Euler and Bonnet).

@ It is the unique complete, embedded minimal surface with genus
zero, finite topology and more than one end (Lépez and Ros).

@ The catenoid is characterized as being the unique complete,
embedded minimal surface with finite topology and two ends
(Schoen, Colding and Minicozzi).



Helicoid. Image by Matthias Weber

Key Properties:
@ Proved to be minimal by Meusnier in 1776.
@ The helicoid has genus zero, one end and infinite total curvature.
@ Together with the plane, the helicoid is the only ruled minimal
surface (Catalan).

@ It is the unique simply-connected, complete, embedded minimal
surface (Meeks and Rosenberg, Colding and Minicozzi).



Enneper surface. Image by Matthias Weber

Key Properties:
@ Weierstrass Data: M =C, g(z) =z, dh=2zdz.

@ Discovered by Enneper in 1864, using his newly formulated analytic
representation of minimal surfaces in terms of holomorphic data,
equivalent to the Weierstrass representation.

@ This surface is non-embedded, has genus zero, one end and total
curvature —4m.

@ It contains two horizontal orthogonal lines and the surface has two
vertical planes of reflective symmetry.



Enneper surface. Image by Matthias Weber

Key Properties:

@ Every rotation around the origin in C is an (intrinsic) isometry of
the Enneper surface, but most of these isometries do not extend to
ambient isometries.

@ The catenoid and Enneper's surface are the unique complete
minimal surfaces in R with finite total curvature —4x (Osserman).
@ lIts implicit form is

2 2 3 2 2 2
ye—Xx 2., 2 ye—x 1, > 8, 2
— -] —6 - = — -] =0.
( > —&-gz—i—3 P 4(><—&-y—|—92)—|—9




Meeks minimal Mobius strip. Image by Matthias Weber

Key Properties:
@ Weierstrass Data: M = C — {0}, g(z) = 22 (j—ﬂ)
dh=i (22—1) dz.

z2

@ Found by Meeks in 1981, the minimal surface defined by this
Weierstrass pair double covers a complete, immersed minimal
surface My C R3 which is topologically a Mobius strip.

@ This is the unique complete, minimally immersed surface in R3 of
finite total curvature —6m (Meeks).

@ It contains a unique closed geodesic which is a planar circle, and
also contains a line bisecting the circle.



Bent helicoids. Image by Matthias Weber

Key Properties:
@ Weierstrass Data: M = C — {0}, g(z) = —zZ*, dh= %dz.

izn4i"

@ Discovered in 2004 by Meeks and Weber and independently by Mira.

@ These surfaces are complete, immersed minimal annuli H, c R® with two
non-embedded ends and finite total curvature; each of the surfaces H,
contains the unit circle Sl(l) in the (x1, x2)-plane, and a neighborhood of
Sl(l) in H, contains an embedded annulus H, which approximates, for n
large, a highly spinning helicoid whose usual straight axis has been
periodically bent into the unit circle Sl(l) (thus the name of bent

helicoidsi.




Bent helicoids. Image by Matthias Weber

Key Properties:

@ The H, converge as n — oo to the foliation of R® minus the xs-axis by
vertical half-planes with boundary the x3-axis, and with Sl(l) as the
singular set of C'-convergence.

@ The method applied by Meeks, Weber and Mira to find the bent
helicoids is the classical Bjorling formula with an orthogonal unit field
1 . . . .
along S'(1) that spins an arbitrary number n of times around the circle.
This construction also makes sense when n is half an integer; in the case
n= % Hy /> is the double cover of the Meeks minimal Mobius strip.



Costa torus. Image by Matthias Weber

Key Properties:

@ Weierstrass Data: Based on the square torus
M = C/Z* — {(0,0),(5,0).(0,3)}, g(2) ="P(2).

@ Discovered in 1982 by Costa.

@ This is a thrice punctured torus with total curvature —12m, two
catenoidal ends and one planar middle end. In 1990, Hoffman and
Meeks proved its global embeddedness.

@ The Costa surface contains two horizontal straight lines h, h that
intersect orthogonally, and has vertical planes of symmetry bisecting the
right angles made by I, k.



Costa-Hoffman-Meeks surfaces. Image by M. Weber

Key Properties:

Weierstrass Data: Defined in terms of cyclic covers of S°.

These examples My generalize the Costa torus, and are complete,
embedded, genus k minimal surfaces with two catenoidal ends and one
planar middle end. Both existence and embeddedness were given by
Hoffman and Meeks in 1990.

The symmetry group of the genus k example is generated by
180°-rotations about k + 1 horizontal lines contained in the surface that
intersect at a single point, together with the reflective symmetries in
vertical planes that bisect those lines.

As k — o0, suitable scalings of the My converge either to the singular
configuration given by a vertical catenoid and a horizontal plane passing

through its waist circle, or to the singly-periodic Scherk minimal surface
for 0 = w/2 (Hoffman-Meeks).



Deformation of the Costa torus. Image by M. Weber

Key Properties:

e The Costa surface is defined on a square torus My 5, and
admits a deformation (found by Hoffman and Meeks,
unpublished) where the planar end becomes catenoidal.

e For any a € (0, 00), take M = My , (which varies on
arbitrary rectangular tori), a = 1 gives the Costa torus.

e Hoffman and Karcher proved existence/embeddedness.



Deformation of the Costa-Hoffman-Meeks surfaces.

Key Properties:
e Forany k > 2 and a € (0,00), take M = My ,.

o When a = 1, we find the Costa-Hoffman-Meeks surface of
genus k and three ends.

@ As in the case of genus 1, Hoffman and Meeks
discovered this deformation for values of a close to 1.

e A complete proof of existence and embeddedness for
these surfaces was given by Hoffman and Karcher.
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Genus-one helicoid.

Key Properties:

@ Discovered in 1993 by Hoffman, Karcher and Wei.

@ Hoffman, Weber and Wolf have proved the embeddedness of a genus
one helicoid, obtained as a limit of singly-periodic “genus one” helicoids
invariant by screw motions of arbitrarily large angles.

@ Recently Hoffman and White have given a variational proof of existence.

@ There is computational evidence pointing to the existence of a unique
complete, embedded minimal surface in R? with one helicoidal end for any
positive genus (Traizet, Bobenko, Bobenko and Schmies, Schmies).
Both the existence and the uniqueness questions remain unsolved.



Genus-one helicoid.

Figure: Left: The genus one helicoid. Center and Right: Two views of the (possibly
existing) genus two helicoid. The arrow in the figure at the right points to the second
handle. Images courtesy of M. Schmies (left, center) and M. Traizet (right).
Key Properties:
@ M is conformally a certain rhombic torus T minus one point E. Viewing
T as a rhombus with edges identified in the usual manner, E corresponds
to the vertices of the rhombus.
@ The diagonals of T are mapped into perpendicular straight lines
contained in the surface, intersecting at a single point in space.
@ The unique end of M is asymptotic to a helicoid, so that one of the two
lines contained in the surface is an axis.
@ The Gauss map g is a meromorphic function on T — {E} with an essential
singularity at E, and both d and dh extend meromorphically to T.



Singly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

@ Weierstrass Data M = (CU {co}) — {£eT9/?}, g(z2) =

dh = s, for fixed 0 € (0,7/2]

@ Discovered by Scherk in 1835, these surfaces denoted by Sg form a
1-parameter family of complete, embedded, genus zero minimal surfaces
in a quotient of R3 by a translation, and have four annular ends.

@ Viewed in R3, each surface Sy is invariant under reflection in the (x1, x3)
and (x2, x3)-planes and in horizontal planes at integer heights, and can be
thought of geometrically as a desingularization of two vertical planes
forming an angle of 6.



Singly-periodic Scherk surfaces. Image by M. Weber

Key Properties:
@ The special case Sp— /> also contains pairs of orthogonal lines at planes
of half-integer heights, and has implicit equation sin z = sinh xsinh y.

@ Together with the plane and catenoid, the surfaces Sy are conjectured to
be the only connected, complete, immersed, minimal surfaces in R whose
area in balls of radius R is less than 27 R?. This conjecture was proved by
Meeks and Wolf under the additional hypothesis of infinite symmetry.



Doubly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

@ Weierstrass Data: M = (CU {oo}) — {972}, g(2) =z,

dh = n(zizeid:iie/?)' where 6 € (0,7/2] (the case § = 3.

@ It has implicit equation e” cosy = cos x.

@ Discovered by Scherk in 1835, are the conjugate surfaces to the
singly-periodic Scherk surfaces, and can be thought of geometrically as
the desingularization of two families of equally spaced vertical parallel
half-planes in opposite half-spaces, with the half-planes in the upper
family making an angle of 6 with the half-planes in the lower family.



Doubly-periodic Scherk surfaces. Image by M. Weber

Key Properties:

@ These surfaces are doubly-periodic with genus zero in their corresponding
quotient T2 x R of R3, and were characterized by Lazard-Holly and
Meeks as being the unique properly embedded minimal surfaces with
genus zero in any T2 x R.

@ It has been conjectured by Meeks, Pérez and Ros that the singly and
doubly-periodic Scherk minimal surfaces are the only complete, embedded
minimal surfaces in R® whose Gauss maps miss four points on S?(1).
They also conjecture that the singly and doubly-periodic Scherk minimal
surfaces, together with the catenoid and helicoid, are the only complete,
embedded minimal surfaces of negative curvature.
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Key Properties:

@ Weierstrass Data: M = {(z,w) € (CU {00})? | w? = 2® — 142" + 1},
g(z,w) =2z, dh=z2%,

@ Discovered by Schwarz in the 1880's, it is also called the P-surface.

@ This surface has a rank three symmetry group and is invariant by
translations in Z°.

@ Such a structure, common to any triply-periodic minimal surface
(TPMS), is also known as a crystallographic cell or space tiling.
Embedded TPMS divide R? into two connected components (called

labyrinths in crystallography), sharing M as boundary (or interface) and
interweaving each other.
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Key Properties:

@ This property makes TPMS objects of interest to neighboring sciences as

material sciences, crystallography, biology and others. For example, the

interface between single calcite crystals and amorphous organic matter in
the skeletal element in sea urchins is approximately described by the

Schwarz Primitive surface.

@ The piece of a TPMS that lies inside a crystallographic cell of the tiling

is called a fundamental domain.
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Key Properties:

@ In the case of the Schwarz Primitive surface, one can choose a
fundamental domain that intersects the faces of a cube in closed
geodesics which are almost circles.

@ The Schwarz Primitive surface has many more symmetries than those
coming from the spatial tiling: some of them are produced by rotation
around straight lines contained in the surface, which by the Schwarz
reflection principle divide the surface into congruent graphs with
piecewise linear tetrahedron boundaries.

@ This surface divides space into two congruent three-dimensional regions.



Schwarz Diamond surfaces. Image by M. Weber

Discovered by Schwarz, it is the conjugate surface to the
P-surface, and is another famous example of an embedded
TPMS.




Schoen'’s triply-periodic Gyroid surface. Image by Weber

Definition

The family of associate surfaces of a simply-connected minimal surface with
Weierstrass data (g, dh) are those with the same Gauss map and height
differential e”dh, 6 € [0,27). In particular, the case § = 7/2 is the conjugate
surface. This notion can be generalized to non-simply-connected surfaces,
although in that case the associate surfaces may have periods.

In the 1960’s, Schoen made a surprising discovery: another associate surface
of the Primitive and Diamond surface is an embedded TPMS, and named this
surface the Gyroid.




@ The Primitive, Diamond and Gyroid surfaces play important roles as
surface interfaces in material sciences, in part since they are stable

in their quotient tori under volume preserving variations (see
Ross).

@ These surfaces have index of stability one, and Ros has shown
that any orientable, embedded minimal surface of index one in a flat
three-torus must have genus three. He conjectures that the
Primitive, Diamond and Gyroid are the unique index one minimal
surfaces in their tori, and furthermore, that any flat three-torus
can have at most one embedded, orientable minimal surface
of index one.

@ Traizet has shown that every flat three-torus contains an
infinite number of embedded, genus g, g > 3, minimal surfaces
which are prime in the sense that they do not descend to minimal
surfaces in another three-torus.



1860 Riemann’s discovery! Image by Matthias Weber

| am foliated by circles




Riemann minimal examples. Image by Matthias Weber

| am foliated by circles

Key Properties:
° My ={(z,w) € (CU{o0})? | w? =
z(z = A)(Az + 1)} — {(0,0), (00, 00)}, g(z, w) = z, dh = A\ %, for
each A > 0, where A is a non-zero complex number satisfying
A3 €R.
@ Discovered in 1860 by Riemann, these examples are invariant under

reflection in the (xi, x3)-plane and by a translation T, and in the
quotient space R’/ T have genus one and two planar ends.

@ After appropriate scalings, they converge to catenoids as t — 0 or
to helicoids as t — oc.



Riemann minimal examples. Image by Matthias Weber

I am foliated by circles

Key Properties:

@ The Riemann minimal examples have the amazing property that
every horizontal plane intersects the surface in a circle or in a
line.

@ The conjugate minimal surface of the Riemann minimal example for
a given A > 0 is the Riemann minimal example for the parameter

value 1/X (the case A = 1 gives the only self-conjugate surface in
the family).

@ Meeks, Pérez and Ros have shown that these surfaces are the only
properly embedded minimal surfaces in R3 of genus zero and infinite
topology.

D



Key Properties:

@ This is a three-dimensional family of doubly-periodic minimal surfaces in
R3, that in the smallest quotient in some T2 x R have four parallel
Scherk type ends and total curvature —8r.

@ The conjugate surface of any KMR surface also lies in this family.

@ The first KMR surfaces were found by Karcher in 1988. One year later,
Meeks and Rosenberg found examples of the same type as Karcher’s.



Figure: Two examples of doubly-periodic KMR surfaces. Images taken
from the 3D-XplorMath Surface Gallery

Key Properties:

@ In 2005, Pérez, Rodriguez and Traizet gave a general construction that
produces all possible complete, embedded minimal tori with parallel ends
in any T2 x R, and proved that this moduli space reduces to the
three-dimensional family of KMR surfaces.

@ It is conjectured that the only complete, embedded minimal surfaces in
R? whose Gauss map misses exactly 2 points on S? are the catenoid,
helicoid, Riemann examples, and these KMR examples.



Callahan-Hoffman-Meeks surfaces. Image by M. Weber

Key Properties:

@ In 1989, Callahan, Hoffman and Meeks generalized the Riemann
minimal examples by constructing for any integer kK > 1 a singly-periodic,
properly embedded minimal surface M, C R3 with infinite genus and an
infinite number of horizontal planar ends at integer heights and are
invariant under the orientation preserving translation by vector
T =(0,0,2), such that My /T has genus 2k + 1 and two ends.

@ They not only produced the Weierstrass data of the surface, but also
gave an alternative method for finding this surface, based on blowing-up
a singularity in a sequence of compact minimal annuli with boundaries.
This rescaling process was a prelude to the crucial role that rescaling
methods play nowadays in minimal surface theory.



Callahan-Hoffman-Meeks surfaces. Image by M. Weber

Other Key Properties:

@ Every horizontal plane at a non-integer height intersects My in a simple
closed curve.

@ Every horizontal plane at an integer height intersects My in k 4 1 straight
lines that meet at equal angles along the x3-axis.

@ Every horizontal plane at half-integer heights n+ % is a plane of symmetry
of My, and any vertical plane whose reflection leaves invariant the
horizontal lines on My described in point 2, is also a plane of symmetry.



One of the consequences of the fact that minimal surfaces can
be viewed locally as solutions of a partial differential equation
is that they satisfy a maximum principle. We will state this
principle for minimal surfaces in R3, but it also holds when the
ambient space is any Riemannian three-manifold.

Theorem (Interior Maximum Principle)

Let My, M, be connected minimal surfaces in R® and p an
interior point to both surfaces, such that the tangent spaces
satisfy:

Tle = TpM2 = {X3 = 0}

If M1, M5 are locally expressed as the graphs of functions
uy, up around p and uy < uy in a neighborhood of p, then
M; = M, in a neighborhood of p.




Theorem (Half-space Theorem, Hoffman-Meeks)

Let M C R3 be a proper, connected, non-planar minimal surface
without boundary. Then M cannot be contained in a halfspace.
Proof.

Suppose that M € H = {(x, y,z) € R*| z < 0}, where H is smallest,
and the distance of M to the unit disk in R? is greater than 2¢ > 0. So
M is disjoint from the half catenoid C in the figure below.
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Figure: The C;, t € (0, 1], are homothetic shrinkings of C.

Since each C intersects H in a compact set, if some C intersects M,

there is a largest t" such that C;» N M # @. But then C; lies on one

side of M at the point of intersection and so C;» C M, a contradiction.

Since U, ¢(0.1 C¢ contains {z = —¢} which is disjoint from M, then M

lies in a smaller halfspace of H, a contradiction. ]
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Corollary (Strong Half-space Theorem, Hoffman-Meeks)

Let My, M, C R? be two proper, connected, non-planar
minimal surfaces which do not intersect. Then My and M, are
parallel planes.

Sketch of the proof.

By previous work of Meeks, Simon and Yau, there exists a
properly embedded minimal surface X of least area in the
region W between M; and M,, which must be a plane. Now
apply the Half-space Theorem. O
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Theorem (Maximum Principle at Infinity, Meeks-Rosenberg)

Let My, M, C N be disjoint, connected, properly immersed
minimal surfaces with (possibly empty) boundary in a
complete flat three-manifold N.

i) If OMy # O or OM, # ), then after possibly reindexing,

diSt(Ml, Mz) = inf{dist(p, Q) | p €My, g€ M2}
i) If OMy = OM, = O, then My and M, are flat.




We now describe a beautiful and deep application of the
general maximum principle at infinity. The next corollary was
proved by Meeks-Rosenberg and Soret proved a slightly
weaker version.

Corollary (Regular Neighborhood Theorem)

Suppose M C N is a properly embedded minimal surface with
absolute Gaussian curvature at most 1 in a complete flat
three-manifold N. Let N1(M) be the open unit disk bundle of
the normal bundle of M given by the vectors of length strictly
less that 1. Then, the corresponding exponential map
exp: Ni(M) — N is a smooth embedding. In particular:

e M has an open, embedded tubular neighborhood of

radius 1.

o The area of M in extrinsic metric balls of N is at most a
universal constant times the volume of the ambient balls.




Second variation of area

o Let M C R® be a minimal surface and Q c M a
subdomain with compact closure. Any compactly
supported, smooth normal deformation of the inclusion
X: M — R3 on Q can be written as X + tuN, where N is
the Gauss map of M and u € C5°(€2). The area functional
Area = Area(t) for this deformation has Area’(0) = 0.

e The second variation of area can be easily shown to be
Area”(0) = —/ u(Au — 2Ku) dA, (1)
Q

where K is the Gaussian curvature function of M and A
its Laplace operator.

e Formula (1) can be viewed as the bilinear form associated
to the linear elliptic L2-selfadjoint operator J = A — 2K,
which is called the Jacobi operator.



Definition of stability

o Functions in the kernel of the Jacobi operator

J = A — 2K of a minimal surface M are called
Jacobi functions.
o M is called stable if the first variation of area is
positive for any compactly supported variation.
o Stability is equivalent to the existence of a

positive Jacobi function when M is two-sided
(Fischer-Colbrie).




Do Carmo-Peng, Fischer-Colbrie and Schoen and
Pogorelov proved: The plane is the only complete stable
orientable minimal surface in R3.

Lemma (Stability Lemma, Meeks-Perez-Ros and

Colding-Minicozzi)

LetL c R3— {5} be a stable, orientable, connected minimal
surface which is complete outside the origin. Then, its closure
L is a plane.

Proof Consider the metric g = %g on L, where g is the
metric induced by the usual inner product (,) of R?. Since
(R® — {0},8) with g = & (,), is isometric to S?(1) x R and L
is complete outside 0, then (L,g) c (R®—{0},2) is complete.
The lemma follows from the next assertion.

The surface (L, g) has Gaussian curvature function K. = 0.




Proof.
The laplacians and Gauss curvatures of g, g are related by the
equations:

o A =R2A,

o K =RXK,+ AlogR),

and since AlogR = w > 0, then

o —A +K=R2(—A+K,+AlogR) > R*(—A +K).
Since Ki < 0 and (L, g) is stable, -
—A+K.>-A+2K_ >0,and so, —A+K >0on (L,g).
As g is complete, the universal covering of L is conformally C

(Fischer-Colbrie and Schoen). Since (L, g) is stable, there
exists a positive Jacobi function u on L (Fischer-Colbrie).
Passing to the universal covering E AU = 2Ktﬁ <0.
Therefore, U is a positive superharmonic on C, and hence
constant. Thus, 0 = Au — 2K, v = —2K,_u on L, which
means K, = 0. ]




