
Conjecture (Convex Curve Conjecture, Meeks)
Two convex Jordan curves in parallel planes cannot bound a
compact minimal surface of positive genus.

Results of Meeks and White indicate that the Convex
Curve Conjecture holds in the case where the two convex
planar curves lie on the boundary of their convex hull; in this
case, the planar Jordan curves are called extremal.

Results of Ekholm, White and Wienholtz imply every
compact minimal surface that arises as a counterexample to
the Convex Curve Conjecture is embedded, and that for a
fixed pair of extremal, convex planar curves, there is a bound
on the genus of such a minimal surface.

Meeks has conjectured that if Γ = {α, β1, β2, .., βn} ⊂ R3 is
a finite collection of planar, convex, simple closed curves with
α in one plane and with {β1, β2, .., βn} bounding a pairwise
disjoint collection of disks in a parallel plane, then any
compact minimal surface with boundary Γ must have genus 0.



Conjecture (4π-Conjecture, Meeks, Yau, Nitsche)

If Γ is a simple closed curve in R3 with total curvature at most 4π, then
Γ bounds a unique compact, orientable, branched minimal surface and
this unique minimal surface is an embedded disk.

Nitsche proved that a regular analytic Jordan curve in R3 whose
total curvature is at most 4π bounds a unique minimal disk.

Meeks and Yau demonstrated the conjecture if Γ is a C 2-extremal
curve (they even allowed the minimal surface spanned by Γ to be
non-orientable).

Ekholm, White and Wienholtz conjecture:

Besides the unique minimal disk given by Nitsche’s
Theorem, only one or two Möbius strips can occur;
and if the total curvature of Γ is at most 3π, then
there are no such Möbius strip examples.



Conjecture (Isolated Singularities Conjecture,
Gulliver, Lawson)

If M ⊂ B− {(0, 0, 0)} is a smooth properly embedded
minimal surface with ∂M ⊂ ∂B and M = M ∪ {(0, 0, 0)},
then M is a smooth compact minimal surface.



Conjecture (Fundamental Singularity Conjecture,
Meeks, Pérez, Ros)

If A ⊂ R3 is a closed set with zero 1-dimensional Hausdorff
measure and L is a minimal lamination of R3 − A, then L
extends to a minimal lamination of R3.

The related Local Removable Singularity Theorem for
H-laminations by Meeks, Pérez and Ros is a cornerstone
for the proofs of:

the Quadratic Curvature Decay Theorem

the Dynamics Theorem

the Finite Topology Closure Theorem,

which illustrate the usefulness of removable singularities
results.



Conjecture (Connected Graph Conjecture, Meeks)

A minimal graph in R3 with zero boundary values over a proper,
possibly disconnected domain in R2 can have at most two
non-planar components. If the graph also has sublinear growth,
then such a graph with no planar components is connected.

Consider a proper, possibly disconnected domain D in R2 and a
solution u : D → R of the minimal surface equation with zero
boundary values, such that u is non-zero on each component of D.

In 1981 Mikljukov proved that if each component of D is
simply-connected with a finite number of boundary
components, then D has at most three components.
Current tools show that his method applies to the case that D
has finitely generated first homology group.
Li and Wang proved that the number of disjointly supported
minimal graphs with zero boundary values over an open
subset of R2 is at most 24.
Next Tkachev proved the number of disjointly supported
minimal graphs is at most three.



In the discussion of the conjectures that follow, it is
helpful to fix some notation for certain classes of
complete embedded minimal surfaces in R3.

Notation
C = the space of connected, complete,
embedded minimal surfaces.

P ⊂ C = the subspace of properly
embedded surfaces.

M⊂ P = the subspace of surfaces with
more than one end.



Conjecture (Finite Topology Conjecture I, Hoffman, Meeks)

An orientable surface M of finite topology with genus g and k
ends, k 6= 0, 2, occurs as a topological type of a surface in C
if and only if k ≤ g + 2.

The method of Weber and Wolf indicates that the
existence implication in the Finite Topology Conjecture
holds when k > 2.
Meeks, Pérez and Ros proved that for each positive
genus g, there exists an upper bound e(g) on the number
of ends of an M ∈M with finite topology and genus g.
Hence, the non-existence implication follows if one can
show that e(g) can be taken as g + 2.
Concerning the case k = 2, the only examples in M with
finite topology and two ends are catenoids (Collin,
Schoen, Colding-Minicozzi).
If M has finite topology, genus zero and at least two ends,
then M is a catenoid (Lopez, Ros).



Conjecture (Finite Topology Conjecture II, Meeks,
Rosenberg)

For every non-negative integer g, there exists a unique
non-planar M ∈ C with genus g and one end.

Hoffman, Weber and Wolf and Hoffman and White
proved existence of a genus one helicoid.

This existence proof is based on the earlier computational
construction by Hoffman, Karcher and Wei.

For genera g = 2, 3, 4, 5, 6, there are computational
existence results.



Conjecture (Infinite Topology Conjecture, Meeks)

A non-compact, orientable surface of infinite topology occurs
as a topological type of a surface in P if and only if it has at
most one or two limit ends, and when it has exactly one limit
end, then its limit end with infinite genus.

In the infinite topology case, either M has infinite genus
or M has an infinite number of ends.

Such an M must have at most two limit ends (Collin,
Kusner, Meeks and Rosenberg).

Such an M cannot have one limit end and finite genus
(Meeks, Pérez and Ros).



Conjecture (Liouville Conjecture, Meeks)

If M ∈ P and h : M → R is a positive harmonic function, then
h is constant.

If M ∈ P has finite genus, a limit end of genus 0 (Meeks,
Perez, Ros) or two limit ends (Collin, Kusner, Meeks,
Rosenberg), then M is recurrent for Brownian motion,
which implies M satisfies the Liouville Conjecture.

By work of Meeks, Pérez and Ros, the above conjecture
holds for all of classical examples.

Below is a related conjecture.

Conjecture (Multiple-End Recurrency Conjecture, Meeks)

If M ∈M, then M is recurrent for Brownian motion.



Conjecture (Isometry Conjecture, Choi, Meeks, White)

If M ∈ C, then every intrinsic isometry of M extends to an ambient
isometry of R3. Furthermore, if M is not a helicoid, then it is minimally
rigid, in the sense that any isometric minimal immersion of M into R3 is
congruent to M.

The Isometry Conjecture is known to hold if:

M ∈M (Choi, Meeks and White),

M is doubly-periodic (Meeks and Rosenberg),

M is periodic with finite topology quotient (Meeks and Pérez)

M has finite genus (Meeks and Tinaglia).

One can reduce the Isometry Conjecture to checking that whenever

M ∈ P has one end and infinite genus, then there exists a plane in R3

that intersects M in a set that contains a simple closed curve. The

reason for this reduction is that the flux of M along such a simple closed

curve is not zero, and hence, none of the associate surfaces to M are

well-defined; but Calabi proved that the associate surfaces are the only

isometric minimal immersions from M into R3, up to congruence.



Conjecture (Scherk Uniqueness Conjecture, Meeks,
Wolf)

If M is a connected, properly immersed minimal surface in R3

and Area(M ∩ B(R)) ≤ 2πR2 holds in balls B(R) of radius R,
then M is a plane, a catenoid or one of the singly-periodic
Scherk minimal surfaces.

By the Monotonicity Formula, any connected non-flat,
properly immersed minimal surface in R3 with

lim
R→∞

R−2Area(M ∩ B(R)) ≤ 2π,

is embedded.

Meeks and Wolf proved the Scherk Uniqueness
Conjecture holds under the assumption that the surface
is periodic.



Conjecture (Unique Limit Tangent Cone Conjecture,
Meeks)
If M ∈ P is not a plane and has quadratic area growth, then
limt→∞

1
t M exists and is a minimal, possibly non-smooth cone

over a finite balanced configuration of geodesic arcs in the unit
sphere, with common ends points and integer multiplicities.

Meeks and Wolf’s proof of the Scherk Uniqueness Conjecture
in the periodic case uses that the Unique Limit Tangent Cone
Conjecture above holds in the periodic setting; this approach
suggests to solve the Scherk Uniqueness Conjecture by:

First to prove the uniqueness of the limit tangent cone of M,
from which it should follow that M has two Alexandrov-type
planes of symmetry.

Next use these planes of symmetry to describe the Weierstrass
representation of M. Meeks and Wolf claim this would be
sufficient to complete the proof of the conjecture.



Conjecture (Injectivity Radius Growth Conjecture,
Meeks, Pérez, Ros)

An M ∈ C has finite topology if and only if its injectivity
radius function grows at least linearly with respect to the
extrinsic distance from the origin.

If M ∈ C has finite topology, then M has finite total
curvature or is asymptotic to a helicoid. So there exists a
constant CM > 0 such that the injectivity radius function
IM : M → (0,∞] satisfies

IM(p) ≤ CM‖p‖, p ∈ M.

Work Meeks, Pérez and Ros indicates that this linear
growth property of the injectivity radius function
characterizes the finite topology examples in C.



Conjecture (Negative Curvature Conjecture,
Meeks, Pérez, Ros)
If M ∈ C has negative curvature, then M is a catenoid, a helicoid
or one of the singly or doubly-periodic Scherk minimal surfaces.

Suppose M ∈ C has finite topology. M either has finite total
curvature or is a helicoid with handles. Such a surface has
negative curvature if and only if it is a catenoid or a helicoid.
Suppose M ∈ C is invariant under a proper discontinuous
group G of isometries of R3 and M/G has finite topology.
Then M/G is properly embedded in R3/G (Meeks, Pérez,
Ros) and M/G has finite total curvature (Meeks,
Rosenberg). If M/G has negative curvature and the ends of
M/G are helicoidal or planar, then M is easily proven to have
genus zero, and so, it is a helicoid. If M/G is doubly-periodic,
then M is a Scherk minimal surface. In the case M/G is
singly-periodic, then M must have Scherk-type ends but we
do not know if the surface must be a Scherk singly-periodic
minimal surface.



Conjecture (Four Point Conjecture, Meeks, Pérez, Ros)

Suppose M ∈ C. Then:

1 If the Gauss map of M omits 4 points on S2
(1), then M is a singly

or doubly-periodic Scherk minimal surface.

2 If the Gauss map of M omits exactly 3 points on S2
(1), then M is a

singly-periodic Karcher saddle tower whose flux polygon is a
convex unitary hexagon. (note that any three points in a great
circle are omitted by one of these examples).

3 If the Gauss map of M omits exactly 2 points, then M is a catenoid,
a helicoid, one of the Riemann minimal examples or one of the
KMR doubly-periodic minimal tori. In particular, the pair of points
missed by the Gauss map of M must be antipodal.



Conjecture (Four Point Conjecture, Meeks, Pérez, Ros)

Suppose M ∈ C. Then:

1 If the Gauss map of M omits 4 points on S2
(1), then M is a singly

or doubly-periodic Scherk minimal surface.

2 If the Gauss map of M omits exactly 3 points on S2
(1), then M is a

singly-periodic Karcher saddle tower whose flux polygon is a
convex unitary hexagon. (note that any three points in a great
circle are omitted by one of these examples).

3 If the Gauss map of M omits exactly 2 points, then M is a catenoid,
a helicoid, one of the Riemann minimal examples or one of the
KMR doubly-periodic minimal tori. In particular, the pair of points
missed by the Gauss map of M must be antipodal.

A classical result of Fujimoto is that the Gauss map of any
orientable, complete, non-flat, minimally immersed surface in R3

cannot exclude more than 4 points.

If one assumes that a surface M ∈ C is periodic with finite
topology quotient, then Meeks, Pérez and Ros have solved the
first item in the above conjecture.



Conjecture (Finite Genus Properness Conjecture,
Meeks, Pérez, Ros)

If M ∈ C and M has finite genus, then M ∈ P .

Colding and Minicozzi proved the conjecture for
surfaces of finite topology.

Meeks, Pérez and Ros proved the Finite Genus
Properness Conjecture under the additional hypothesis
that M has a countable number of ends or even a
countable number of limit ends.

Meeks, Pérez and Ros had conjectured that if M ∈ C
has finite genus, then M has bounded Gaussian curvature,
which they proved is equivalent to the above conjecture.



Conjecture (Embedded Calabi-Yau Conjecture
Martin, Meeks, Nadirashvili; Meeks, Perez, Ros)

Let M be open surface.
1 There exists a complete proper minimal embedding of M

in every smooth bounded domain D ⊂ R3 iff M is
orientable and every end has infinite genus.

2 There exists a complete proper minimal embedding of M
in some smooth bounded domain D ⊂ R3 iff every end
of M has infinite genus and M has a finite number of
nonorientable ends.

3 There exists a complete proper minimal embedding of M
in some particular non-smooth bounded domain
D ⊂ R3 iff every end of M has infinite genus.



Conjecture (Embedded Calabi-Yau Conjectures)

There exists an M ∈ C whose closure M has the
structure of a minimal lamination of a slab, with
M as a leaf and with two planes as limit leaves.
In particular, P 6= C (Meeks).

A connected, complete, embedded surface of
non-zero constant mean curvature in R3 with
finite genus is properly embedded (Meeks,
Tinaglia).



Conjecture (Stable Minimal Surface Conjectures)

1 A complete, non-orientable, stable minimal surface in R3 with
compact boundary has finite total curvature (Ros).

2 If A ⊂ R3 is a closed set with zero 1-dimensional Hausdorff measure
and M ⊂ R3 −A is a connected, stable, minimally immersed surface
which is complete outside of A, then the closure of M is a plane
(Meeks).

3 If M ⊂ R3 is a minimal graph over a proper domain in R2 with
boundary, then M is parabolic (López, Meeks, Pérez,
Weitsman).

4 If M ⊂ R3 is a complete, stable minimal surface with boundary,
then M is δ-parabolic (Meeks, Rosenberg).

5 A complete, embedded, stable minimal surface in R3 with boundary
a straight line is a half-plane, a half of the Enneper minimal surface
or a half of the helicoida(Pérez, Ros, White).

aPérez has proved this conjecture under the additional assumption that the
surface is proper and has quadratic area growth.



Since if some flux vector of a minimally immersed M in R3 is
non-zero, then the inclusion map is the unique isometric
minimal immersion of M into R3 up to congruence, the
One-Flux Conjecture below implies the Isometry
Conjecture.

Conjecture ( One-Flux Conjecture, Meeks, Pérez,
Ros)

Let M ∈ C and let
FM = {F(γ) =

∫
γ
Rot90◦(γ

′) | γ ∈ H1(M, Z)} be the abelian
group of flux vectors for M. If FM has rank at most 1, then
M is a plane, a helicoid, catenoid, a Riemann minimal example
or a doubly-periodic Scherk minimal surface.



Conjecture (Standard Middle End Conjecture,
Meeks)

If M ∈M and E ⊂ M is a one-ended representative for a
middle end of M, then E is C 0-asymptotic to the end of a
plane or catenoid. In particular, if M has two limit ends, then
each middle end is C 0-asymptotic to a plane.

The above conjecture can be viewed as a generalization of the
fact:

An annular end E of a surface M ∈M with more
than one end is C 2-asymptotic to the end of a plane
or catenoid.



An end e ∈ E(M′) of a non-compact Riemannian manifold M′ is
called massive or non-parabolic if every open, proper subdomain
Ω ⊂ M′ with compact boundary that represents e is massive (i.e.
there exists a bounded subharmonic function v : M′ → [0,∞) such
that v = 0 in M′ −Ω and supΩ v > 0.)

Conjecture (Meeks, Pérez, Ros)
Let M ∈M with horizontal limit tangent plane at infinity. Then:

M has a massive end if and only if it admits a non-constant,
positive harmonic function (Massive End Conjecture).

Any proper, one-ended representative E with compact
boundary for a middle end of M has vertical flux (Middle
End Flux Conjecture).

Suppose that there exists a half-catenoid C with negative
logarithmic growth in R3 −M. Then, any proper subdomain
of M that only represents ends that lie below C (in the sense
of the Ordering Theorem) has quadratic area growth
(Quadratic Area Growth Conjecture).



Riemann minimal examples near helicoid limits



Conjecture (Parking Garage Structure Conjecture,
Meeks, Pérez, Ros)

Suppose Mn ⊂ B(Rn) is a locally simply-connected sequence of
embedded minimal surfaces with ∂Mn ⊂ ∂B(Rn) and Rn →∞ as
n →∞. Assume also that the sequence Mn does not have
uniformly bounded curvature in B(1). Then:

After a rotation and choosing a subsequence, the Mn converge
to a minimal parking garage structure on R3 consisting of the
foliation L of R3 by horizontal planes, with singular set of
convergence being a locally finite collection S(L) of vertical
lines which are the columns of the parking garage structure.

For any two points p, q ∈ R3 − S(L), the ratio of the vertical
spacing between consecutive sheets of the double multigraphs
defined by Mn near p and q, converges to one as n →∞.
Equivalently, the Gaussian curvature of Mn blows up at the
same rate along all the columns as n →∞.


