History (Minimal Dynamics Theorem, Meeks-Perez-Ros 2005, **CMC** Dynamics Theorem, Meeks-Tinaglia 2008)

Briefly stated, these Dynamics Theorems deal with describing all of the periodic or repeated geometric behavior of a properly embedded minimal or CMC surface in R³ in order to better understand general properties that hold for all such surfaces.

Today I will be discussing my joint work with **Giuseppe Tinaglia**

at the University of Notre Dame, South Bend, Indiana, concerning the **CMC Dynamics Theorem**.

There are applications of this theorem to curvature estimates for finite topology **CMC** surface in complete locally homogenous 3-manifolds and to the rigidity of finite genus constant mean curvature surfaces in \mathbb{R}^3 .

The space T(M) of translational limits of M

Notation

- M ⊂ R³ is a properly embedded CMC surface with bounded second fundamental form.
- W_M is the closed connected component in R³ on the mean convex side of M.
- L(M) is the set of all properly immersed (not necessarily connected) surfaces $\Sigma \subset \mathbb{R}^3$ which are limits of some sequence of translates $M p_n$, where $p_n \in M$ with $|p_n| \to \infty$.
- **T**(**M**) is the set of (pointed) components of surfaces in **L**(**M**) passing through the origin.

- On the left is the singly-periodic surface M, which is the CMC desingularization of the collection of singly-periodic spheres on the right.
- Elements of L(M) are all translates of M and a doubly periodic family of Delaunay surfaces which contain $\vec{0}$.
- Elements of T(M) are translates of M passing through $\vec{0}$ and translates of a fixed Delaunay surface D passing through $\vec{0}$.

Area vs Volume Estimates and proof $T(M) \neq \emptyset$

Lemma

M has a fixed size regular neighborhood in $\mathbf{W_M}$ and points in $\mathbf{W_M}$ are a uniformly bounded distance from \mathbf{M} . So, there exist positive constants $\mathbf{c_1}, \mathbf{c_2}$ such that for any $\mathbf{p} \in \mathbf{M}$ and $\mathbf{R} \geq 1$,

$$c_1 \leq \frac{\operatorname{Area}(M \cap \mathbb{B}(\textbf{p},\textbf{R}))}{\operatorname{Volume}(\textbf{W}_M \cap \mathbb{B}(\textbf{p},\textbf{R}))} \leq c_2.$$

Thus, for every divergent sequence of points $\mathbf{p_n} \in \mathbf{M}$, a subsequence of the surfaces $\mathbf{M} - \mathbf{p_n}$ converges to a limit surface in $L(\mathbf{M})$.

Similar results hold for each $\Sigma \in T(M) \bigcup L(M)$ with respect to W_{Σ} .

Picture of W_{Σ} with the fixed sized red regular neighborhood of $\partial W_{\Sigma} = \Sigma$.

Invariance mapping $T: T(M) \rightarrow \mathcal{P}(T(M))$

Lemma (Invariance Lemma)

For each $\Sigma \in T(M)$, we have

$$\mathsf{T}(\mathbf{\Sigma})\subset\mathsf{T}(\mathsf{M}).$$

Proof.

Let $F \in T(\Sigma)$ and let $D \subset F$ be a compact disk with $\vec{0} \in D$. Let $D_n \subset \Sigma$ be disks with divergent points $p_n \in D_n$ such that

$$\mathbf{D_n} - \mathbf{p_n} \to \mathbf{D}$$
.

Let $\textbf{E}_n\subset \textbf{M}$ be disks with points $\textbf{q}_n\in \textbf{E}_n$, $|\textbf{q}_n|>2|\textbf{p}_n|$, such that

$$d_{\mathcal{H}}(\textbf{E}_{\textbf{n}}-\textbf{q}_{\textbf{n}},\textbf{D}_{\textbf{n}})<\frac{1}{\textbf{n}}.$$

Then a subsequence of compact domains on the surfaces $M - (p_n + q_n)$ converges to F. Thus, $F \in T(M)$.

Definition of minimal T-invariant sets

Definition

- $\Delta \subset \mathsf{T}(\mathsf{M})$ is called T -invariant, if $\Sigma \in \Delta$ implies $\mathsf{T}(\Sigma) \subset \Delta$.
- A nonempty subset ∆ ⊂ T(M) is called a
 minimal T-invariant set, if it is T-invariant and
 contains no smaller nonempty T-invariant
 subsets.
- Σ ∈ T(M) is called a minimal element, if Σ is contained in some minimal T-invariant set
 Δ ⊂ T(M).

The only nonempty **minimal T**-invariant $\Delta \subset T(M)$ is T(D), where $D \in T(M)$ is a fixed Delaunay surface.

Characterization of minimal T-invariant sets

Lemma

A nonempty set $\Delta \subset T(M)$ is a minimal T-invariant set if and only if whenever $\Sigma \in \Delta$, then $T(\Sigma) = \Delta$.

Proof.

Suppose Δ is a nonempty minimal T-invariant set and $\Sigma \in \Delta$. The Invariance Lemma implies $T(\Sigma) \subset \Delta$ is a nonempty T-invariant set. Since Δ is minimal, $T(\Sigma) = \Delta$.

Suppose Δ is nonempty set and whenever $\Sigma \in \Delta$, then $\mathsf{T}(\Sigma) = \Delta$; so, Δ is T -invariant. Let $\Delta' \subset \Delta$ be a nonempty T -invariant set and $\Sigma' \in \Delta'$. Since $\Sigma' \in \Delta$ as well, then $\Delta = \mathsf{T}(\Sigma') \subset \Delta'$. Hence, $\Delta' = \Delta$, which proves Δ is a nonempty minimal T -invariant set.

Compact metric space structure on T(M)

Lemma

T(M) has a natural compact topological space structure induced by a metric.

Proof.

Suppose $\Sigma \in T(M)$ is embedded at $\vec{0}$. There exists an c > 0independent of the choice of Σ so that the disk component $D(\Sigma) \subset \Sigma \cap \overline{\mathbb{B}}(\vec{0}, \mathbf{c})$ containing $\vec{0}$ is a graph. Given another such $\Sigma' \in \mathsf{T}(\mathsf{M})$, define $d(\mathbf{\Sigma}, \mathbf{\Sigma}') = d_{\mathcal{H}}(\mathbf{D}(\mathbf{\Sigma}), \mathbf{D}(\mathbf{\Sigma}')),$

where $\mathbf{d}_{\mathcal{H}}$ is the Hausdorff distance.

Compact metric space structure on T(M)

Lemma

 $\mathsf{T}(\mathsf{M})$ has a natural compact topological space structure induced by a metric.

Proof.

Suppose $\Sigma \in T(M)$ is embedded at $\vec{0}$. There exists an c>0 independent of the choice of Σ so that the disk component $D(\Sigma) \subset \Sigma \cap \overline{\mathbb{B}}(\vec{0},c)$ containing $\vec{0}$ is a graph. Given another such $\Sigma' \in T(M)$, define

$$\mathbf{d}(\mathbf{\Sigma},\mathbf{\Sigma}')=\mathbf{d}_{\mathcal{H}}(\mathbf{D}(\mathbf{\Sigma}),\mathbf{D}(\mathbf{\Sigma}')),$$

where $\mathbf{d}_{\mathcal{H}}$ is the Hausdorff distance. If $\vec{0}$ is not a point where Σ is embedded, let $D(\Sigma) \subset \Sigma \cap \overline{\mathbb{B}}(\vec{0},\mathbf{c})$ be the component with base point at $\vec{0}$. The proof of the Invariance Lemma implies every sequence $\Sigma_n \in T(M)$ has a subsequence which converges to a surface $\Sigma_\infty \in T(M)$, and so T(M) is compact.

Existence of minimal elements in T(M)

Lemma

Every nonempty T-invariant subset of T(M) contains a nonempty minimal T-invariant set.

Proof.

Let Δ be a nonempty **T**-invariant set. Then:

- For any $\Sigma \in \Delta$, $T(\Sigma) \subset \Delta$ is a nonempty closed set in T(M) which is T-invariant (Invariance Lemma).
- The intersection of closed sets in T(M) is closed.
- **3** The intersection of **T**-invariant set is **T**-invariant. **Proof:** Let $\{\Delta_{\alpha}\}_{{\alpha}\in J}$ be a collection of **T**-invariant sets in **T**(**M**). Let $\Sigma\in\bigcap_{{\alpha}\in J}\Delta_{\alpha}$.

Then for all $\alpha \in \mathbf{J}$:

- $\Sigma \in \Delta_{\alpha}$, by definition of \bigcap .
- $\mathsf{T}(\mathbf{\Sigma}) \subset \mathbf{\Delta}_{\alpha}$, since $\mathbf{\Delta}_{\alpha}$ is T -invariant.

Hence, $\mathsf{T}(\Sigma) \subset \bigcap_{\alpha \in I} \Delta_{\alpha}$, so $\bigcap_{\alpha \in I} \Delta_{\alpha}$ is T -invariant.

Existence of minimal elements in T(M)

Lemma

Every nonempty T-invariant subset of T(M) contains a nonempty minimal T-invariant set.

Proof.

Let Δ be a nonempty T-invariant set. Then:

- For any $\Sigma \in \Delta$, $T(\Sigma) \subset \Delta$ is a nonempty closed set in T(M) which is T-invariant (Invariance Lemma).
- ② The intersection of closed sets in T(M) is closed.
- **1** The intersection of **T**-invariant set is **T**-invariant.

 $\Lambda = \{ \Delta' \subset \Delta \mid \Delta \text{ is nonempty, closed and \mathbf{T}-invariant} \}$, by Zorn's Lemma, contains a minimal element for the partial ordering \subset . (If $\Lambda' \subset \Lambda$ is a nonempty totally ordered set, then $\bigcap \Lambda' \in \Lambda$ is a lower bound.) Let Δ' be a minimal element of Λ and $\Delta'' \subset \Delta'$ be a nonempty \mathbf{T} -invariant set. For $\mathbf{\Sigma} \in \Delta''$, $\mathbf{T}(\mathbf{\Sigma}) \in \Lambda$. So, $\Delta' = \mathbf{T}(\mathbf{\Sigma}) \subset \Delta''$. Thus, Δ' is minimal.

Theorem (CMC Dynamics Theorem in homogeneous manifolds)

Let M denote a noncompact, properly embedded, separating CMC hypersurface with bounded second fundamental form in a homogeneous manifold N. Fix a base point $p \in N$ and a transitive group G of isometries. Let $T_G(M)$ the set of connected, properly immersed submanifolds passing through p which are limits of a divergent sequence of compact domains on M "translated" by elements in G. Then:

- M has a fixed size regular neighborhood on its mean convex side.
- For each $\Sigma \in \mathsf{T}_{\mathsf{G}}(\mathsf{M}) \bigcup \{\mathsf{M}\}$, we have $\mathsf{T}_{\mathsf{G}}(\Sigma) \neq \emptyset$ and $\mathsf{T}_{\mathsf{G}}(\Sigma) \subset \mathsf{T}_{\mathsf{G}}(\mathsf{M})$.
- \bullet $T_G(M)$ and has a natural compact topological space structure induced by a metric.
- Every nonempty T_G -invariant subset of $T_G(M)$ contains a nonempty minimal T_G -invariant subset.

Key properties of minimal elements

Theorem (Minimal Element Theorem)

Suppose that M has possibly nonempty compact boundary and $\Sigma \in T(M)$ is a minimal element. Then:

- $\mathsf{T}(\Sigma) = \mathsf{L}(\Sigma)$, i.e., every surface in $\mathsf{L}(\Sigma)$ is connected.
- If Σ has at least 2 ends, then Σ is a Delaunay surface.
- Σ is chord-arc, i.e., there exists a c>0 such that for $p,q\in\Sigma$ with $d_{R^3}(p,q)\geq 1$, then

$$d_{\Sigma}(p,q) \leq c \cdot d_{\mathbb{R}^3}(p,q).$$

• For all \mathbf{c} , $\mathbf{D} > 0$, there exists a $\mathbf{d}_{c,D} > 0$ such that: For every compact set $\mathbf{X} \subset \mathbf{\Sigma}$ with extrinsic diameter less than \mathbf{D} and for each $\mathbf{q} \in \mathbf{\Sigma}$, there exists a smooth compact, domain $\mathbf{X}_{\mathbf{q},c} \subset \mathbf{\Sigma}$ and a vector, $\mathbf{v}[\mathbf{q},\mathbf{c},\mathbf{D}] \in \mathbf{R}^3$, so that

$$d_{\boldsymbol{\Sigma}}(\boldsymbol{q},\boldsymbol{X}_{\boldsymbol{q},c}) < d_{c,D} \quad \textit{and} \quad d_{\mathcal{H}}(\boldsymbol{X} \;,\; \boldsymbol{X}_{\boldsymbol{q},c} + \boldsymbol{v}[\boldsymbol{q},c,D]) < c.$$