
History (Minimal Dynamics Theorem,
Meeks-Perez-Ros 2005, CMC Dynamics
Theorem, Meeks-Tinaglia 2008)

Briefly stated, these Dynamics Theorems deal with describing
all of the periodic or repeated geometric behavior of a
properly embedded minimal or CMC surface in R3 in order
to better understand general properties that hold for all
such surfaces.

Today I will be discussing my joint work with
Giuseppe Tinaglia

at the University of Notre Dame, South Bend, Indiana,
concerning the CMC Dynamics Theorem.

There are applications of this theorem to curvature estimates
for finite topology CMC surface in complete locally
homogenous 3-manifolds and to the rigidity of finite genus
constant mean curvature surfaces in R3.



The space T(M) of translational limits of M

Notation

M ⊂ R3 is a properly embedded CMC surface
with bounded second fundamental form.

WM is the closed connected component in R3

on the mean convex side of M.

L(M) is the set of all properly immersed (not
necessarily connected) surfaces Σ ⊂ R3 which
are limits of some sequence of translates
M− pn, where pn ∈ M with |pn| → ∞.

T(M) is the set of (pointed) components of
surfaces in L(M) passing through the origin.



On the left is the singly-periodic surface M, which is the
CMC desingularization of the collection of singly-periodic
spheres on the right.

Elements of L(M) are all translates of M and a doubly
periodic family of Delaunay surfaces which contain ~0 .

Elements of T(M) are translates of M passing through ~0 and
translates of a fixed Delaunay surface D passing through ~0.



Area vs Volume Estimates and proof T(M) 6= Ø

Lemma

M has a fixed size regular neighborhood in WM and
points in WM are a uniformly bounded distance
from M. So, there exist positive constants c1, c2

such that for any p ∈ M and R ≥ 1,

c1 ≤
Area(M ∩ B(p,R))

Volume(WM ∩ B(p,R))
≤ c2.

Thus, for every divergent sequence of points
pn ∈ M, a subsequence of the surfaces M− pn

converges to a limit surface in L(M).

Similar results hold for each Σ ∈ T(M)
⋃

L(M)
with respect to WΣ.



Picture of WΣ with the fixed sized red
regular neighborhood of ∂WΣ = Σ.



Invariance mapping T : T(M) → P(T(M))

Lemma (Invariance Lemma)

For each Σ ∈ T(M), we have

T(Σ) ⊂ T(M).

Proof.

Let F ∈ T(Σ) and let D ⊂ F be a compact disk with ~0 ∈ D.
Let Dn ⊂ Σ be disks with divergent points pn ∈ Dn such that

Dn − pn → D.

Let En ⊂ M be disks with points qn ∈ En, |qn| > 2|pn|, such
that

dH(En − qn,Dn) <
1

n
.

Then a subsequence of compact domains on the surfaces
M− (pn + qn) converges to F. Thus, F ∈ T(M).



Definition of minimal T-invariant sets

Definition

∆ ⊂ T(M) is called T-invariant, if Σ ∈ ∆
implies T(Σ) ⊂ ∆.

A nonempty subset ∆ ⊂ T(M) is called a
minimal T-invariant set, if it is T-invariant and
contains no smaller nonempty T-invariant
subsets.

Σ ∈ T(M) is called a minimal element, if Σ is
contained in some minimal T-invariant set
∆ ⊂ T(M).



The only nonempty minimal T-invariant
∆ ⊂ T(M) is T(D), where D ∈ T(M) is a
fixed Delaunay surface.



Characterization of minimal T-invariant sets

Lemma

A nonempty set ∆ ⊂ T(M) is a minimal
T-invariant set if and only if whenever Σ ∈ ∆, then
T(Σ) = ∆.

Proof.

Suppose ∆ is a nonempty minimal T-invariant set and
Σ ∈ ∆. The Invariance Lemma implies T(Σ) ⊂ ∆ is a
nonempty T-invariant set. Since ∆ is minimal, T(Σ) = ∆.

Suppose ∆ is nonempty set and whenever Σ ∈ ∆, then
T(Σ) = ∆; so, ∆ is T-invariant. Let ∆′ ⊂ ∆ be a nonempty
T-invariant set and Σ′ ∈ ∆′. Since Σ′ ∈ ∆ as well, then
∆ = T(Σ′) ⊂ ∆′. Hence, ∆′ = ∆, which proves ∆ is a
nonempty minimal T-invariant set.



Compact metric space structure on T(M)

Lemma

T(M) has a natural compact topological space structure
induced by a metric.

Proof.

Suppose Σ ∈ T(M) is embedded at ~0. There exists an c > 0
independent of the choice of Σ so that the disk component
D(Σ) ⊂ Σ ∩ B(~0, c) containing ~0 is a graph. Given another
such Σ′ ∈ T(M), define

d(Σ,Σ′) = dH(D(Σ),D(Σ′)),

where dH is the Hausdorff distance.

Figure: Picture of .



Compact metric space structure on T(M)

Lemma

T(M) has a natural compact topological space structure
induced by a metric.

Proof.

Suppose Σ ∈ T(M) is embedded at ~0. There exists an c > 0
independent of the choice of Σ so that the disk component
D(Σ) ⊂ Σ ∩ B(~0, c) containing ~0 is a graph. Given another
such Σ′ ∈ T(M), define

d(Σ,Σ′) = dH(D(Σ),D(Σ′)),
where dH is the Hausdorff distance. If ~0 is not a point where
Σ is embedded, let D(Σ) ⊂ Σ ∩ B(~0, c) be the component

with base point at ~0. The proof of the Invariance Lemma
implies every sequence Σn ∈ T(M) has a subsequence which
converges to a surface Σ∞ ∈ T(M), and so T(M) is
compact.



Existence of minimal elements in T(M)

Lemma

Every nonempty T-invariant subset of T(M) contains a
nonempty minimal T-invariant set.

Proof.

Let ∆ be a nonempty T-invariant set. Then:
1 For any Σ ∈ ∆, T(Σ) ⊂ ∆ is a nonempty closed set in

T(M) which is T-invariant (Invariance Lemma).
2 The intersection of closed sets in T(M) is closed.
3 The intersection of T-invariant set is T-invariant. Proof:

Let {∆α}α∈J be a collection of T-invariant sets in T(M).
Let Σ ∈

⋂
α∈J ∆α.

Then for all α ∈ J:
Σ ∈ ∆α, by definition of

⋂
.

T(Σ) ⊂ ∆α, since ∆α is T-invariant.

Hence, T(Σ) ⊂
⋂

α∈J ∆α, so
⋂

α∈J ∆α is T-invariant.



Existence of minimal elements in T(M)

Lemma

Every nonempty T-invariant subset of T(M) contains a
nonempty minimal T-invariant set.

Proof.

Let ∆ be a nonempty T-invariant set. Then:
1 For any Σ ∈ ∆, T(Σ) ⊂ ∆ is a nonempty closed set in

T(M) which is T-invariant (Invariance Lemma).
2 The intersection of closed sets in T(M) is closed.
3 The intersection of T-invariant set is T-invariant.

Λ = {∆′ ⊂ ∆ | ∆ is nonempty, closed and T-invariant}, by
Zorn’s Lemma, contains a minimal element for the partial
ordering ⊂ . (If Λ′ ⊂ Λ is a nonempty totally ordered set, then⋂

Λ′ ∈ Λ is a lower bound.) Let ∆′ be a minimal element of
Λ and ∆′′ ⊂ ∆′ be a nonempty T-invariant set. For Σ ∈ ∆′′,
T(Σ) ∈ Λ. So, ∆′ = T(Σ) ⊂ ∆′′. Thus, ∆′ is minimal.



Theorem (CMC Dynamics Theorem in homogeneous
manifolds)

Let M denote a noncompact, properly embedded, separating
CMC hypersurface with bounded second fundamental form in
a homogeneous manifold N. Fix a base point p ∈ N and a
transitive group G of isometries. Let TG(M) the set of
connected, properly immersed submanifolds passing through p
which are limits of a divergent sequence of compact domains
on M ”translated” by elements in G. Then:

M has a fixed size regular neighborhood on its mean
convex side.

For each Σ ∈ TG(M)
⋃
{M}, we have TG(Σ) 6= Ø and

TG(Σ) ⊂ TG(M).

TG(M) and has a natural compact topological space
structure induced by a metric.

Every nonempty TG-invariant subset of TG(M) contains a
nonempty minimal TG-invariant subset.



Key properties of minimal elements

Theorem (Minimal Element Theorem)

Suppose that M has possibly nonempty compact boundary
and Σ ∈ T(M) is a minimal element. Then:

T(Σ) = L(Σ), i.e., every surface in L(Σ) is connected.

If Σ has at least 2 ends, then Σ is a Delaunay surface.

Σ is chord-arc, i.e., there exists a c > 0 such that for
p,q ∈ Σ with dR3(p,q) ≥1, then

dΣ(p,q) ≤ c · dR3(p,q).

For all c, D > 0, there exists a dc,D > 0 such that: For
every compact set X ⊂ Σ with extrinsic diameter less than
D and for each q ∈ Σ, there exists a smooth compact,
domain Xq,c ⊂ Σ and a vector, v[q, c,D] ∈ R3, so that

dΣ(q,Xq,c) < dc,D and dH(X , Xq,c + v[q, c,D]) < c.


