
The Minimal Element Theorem

The CMC Dynamics Theorem deals with describing
all of the periodic or repeated geometric
behavior of a properly embedded CMC surface
with bounded second fundamental form in R3 in
order to better understand general properties
that hold for all such surfaces. Today I will be

discussing my joint work with
Giuseppe Tinaglia

at the University of Notre Dame, South Bend,
Indiana, concerning the CMC Dynamics
Theorem with a focus on the CMC Minimal
Element Theorem.



The space T(M) of translational limits of M

Notation

M ⊂ R3 is a properly embedded CMC surface
with bounded second fundamental form.

WM is the closed connected component in R3

on the mean convex side of M.

L(M) is the set of all properly immersed (not
necessarily connected) surfaces Σ ⊂ R3 which
are limits of some sequence of translates
M− pn, where pn ∈ M with |pn| → ∞.

T(M) is the set of (pointed) components of
surfaces in L(M) passing through the origin.



On the left is the singly-periodic surface M, which is the
CMC desingularization of the collection of singly-periodic
spheres on the right.

Elements of L(M) are all translates of M and a doubly
periodic family of Delaunay surfaces which contain ~0 .

Elements of T(M) are translates of M passing through ~0 and
translates of a fixed Delaunay surface D passing through ~0.



The only nonempty minimal T-invariant
∆ ⊂ T(M) is T(D), where D ∈ T(M) is a
fixed Delaunay surface.



Characterization of minimal T-invariant sets

Lemma
A nonempty set ∆ ⊂ T(M) is a minimal
T-invariant set if and only if whenever

Σ ∈ ∆, then T(Σ) = ∆.



Theorem (CMC Dynamics Theorem in homogeneous
manifolds)

Let M denote a noncompact, properly embedded, separating
CMC hypersurface with bounded second fundamental form in
a homogeneous manifold N. Fix a base point p ∈ N and a
transitive group G of isometries. Let TG(M) the set of
connected, properly immersed submanifolds passing through p
which are limits of a divergent sequence of compact domains
on M ”translated” by elements in G. Then:

M has a fixed size regular neighborhood on its mean
convex side.

For each Σ ∈ TG(M)
⋃
{M}, we have TG(Σ) 6= Ø and

TG(Σ) ⊂ TG(M).

TG(M) and has a natural compact topological space
structure induced by a metric.

Every nonempty TG-invariant subset of TG(M) contains a
nonempty minimal TG-invariant subset.



Key properties of minimal elements

Theorem (Minimal Element Theorem)

Suppose that M has possibly nonempty compact boundary
and Σ ∈ T(M) is a minimal element. Then:

T(Σ) = L(Σ), i.e., every surface in L(Σ) is connected.

If Σ has at least 2 ends, then Σ is a Delaunay surface.

Σ is chord-arc, i.e., there exists a c > 0 such that for
p,q ∈ Σ with dR3(p,q) ≥1, then

dΣ(p,q) ≤ c · dR3(p,q).

For all c, D > 0, there exists a dc,D > 0 such that: For
every compact set X ⊂ Σ with extrinsic diameter less than
D and for each q ∈ Σ, there exists a smooth compact,
domain Xq,c ⊂ Σ and a vector, v[q, c,D] ∈ R3, so that

dΣ(q,Xq,c) < dc,D and dH(X , Xq,c + v[q, c,D]) < c.



The Alexandrov reflection principle at infinity

Theorem (Halfspace Theorem, R-R, M-T)

If M ⊂ {x3 > 0}, then T(M) has a minimal element with the
(x1, x2)-plane P as a plane of Alexandrov symmetry.

Idea of the proof.

Using the fixed sized regular neighborhood of M and the
Alexandrov reflection principle, one finds a positive number C
so that M ∩ {x3 < C} is a graph a smooth function on some
domain in P and points pn ∈ M ∩ {x3 = C} such that the
tangent spaces to M at the points pn converge to the vertical.
A subsequence of the translated surfaces M− pn gives rise to
a limit surface Σ ∈ T(M) with the plane P as a plane of
Alexandrov symmetry. By the Dynamics Theorem, T(Σ)
contains the desired minimal element.



M with an infinite number of ends

Lemma (Large Balls Lemma)

If R3 −M contains balls of arbitrarily large radius, then T(M)
has a minimal element with a plane of Alexandrov symmetry.

Proof.

Find a sequence Bn of such open balls so that there exist a
divergent sequence of points pn ∈ M∩ ∂Bn and a related limit
Σ ∈ T(M) arising from M− pn, which lies in the halfspace
limn→∞(Bn − pn) ⊂ R3. Then apply the Halfspace Theorem
to Σ.

Corollary

If T(M) does not contain a minimal element with a plane of
Alexandrov symmetry, then there is an integer K such that the
number of ends of M or of any Σ ∈ L(M) is at most K.



Idea of the proof of the corollary.

Suppose that T(M) contains no minimal examples with a
plane of Alexandrov symmetry. The proof uses the following
fact, for any R > 0. Suppose E1,E2, . . . ,Ek are disjoint end
representatives for a surface Σ ∈ T(M) with boundaries in
some ball B(R− 1). When k is sufficiently large, then for
every ball B of radius R in R3 − (Σ ∪ B(R)), B is disjoint
from one of these end representatives. Otherwise, one
contradicts the uniform cubical volume estimate for all
surfaces in T(M) in balls of radius R.

The proof of Large Balls Lemma now works.



M with a plane of Alexandrov symmetry

Theorem (Annular End Theorem)

Suppose M has a plane of Alexandrov symmetry and at least
n > 1 ends. Then M has at least n annular ends.

Corollary

If Σ ∈ T(M) is a minimal element, then each surface in L(Σ) has
at most one end or else Σ is a Delaunay surface.

Proof of the corollary.

If a surface in T(Σ) has a plane of Alexandrov symmetry, then so
does Σ and every surface in L(Σ), and the corollary follows from
the theorem. So assume that no surface in T(Σ) has a plane of
Alexandrov symmetry. If some surface Σ′ ∈ L(Σ) has n > 1 ends,
then the Large Balls Lemma implies every surface in L(Σ′) has at
least n components. Choose F ∈ L(Σ′) with Σ as a component.
Repeating this argument, L(F) ⊂ L(Σ′) has an element with
2n− 1 ends. So T(Σ) has an element with a plane of Alexandrov
symmetry, a contradiction.



Minimal elements Σ ∈ T(M) are chord-arc

Theorem

Minimal elements Σ ∈ T(M) are chord-arc.

Proof: For p, q ∈ R3, d(p, q) = dR3(p, q). Let Σ ∈ T(M)
be a minimal element.

Assertion

There exists a function f : [1,∞) → [1,∞) so that for
p, q ∈ Σ with 1 ≤ d(p, q) ≤ R, dΣ(p, q) ≤ f(R) · d(p, q).

Proof.

Otherwise there exists an R0 and points pn, qn ∈ Σ with
d(pn, qn) ≤ R0 and n ≤ dΣ(pn, qn). Then
(Σ− pn) −→ Σ∞ ∈ L(Σ) which is disconnected; this
contradicts previous corollary, so f exists.



Minimal elements Σ ∈ T(M) are chord-arc

There exists a function f : [1,∞) → [1,∞) so that for
p, q ∈ Σ with 1 ≤ d(p, q) ≤ R, dΣ(p, q) ≤ f(R) · d(p, q).
Case A: Every ball of a fixed radius R− 1 in R3

intersects Σ.

Proof.

Let p, q ∈ Σ such that d(p, q) ≥ 4R. Let B1, . . . ,Bn be a chain of
closed balls of radius R centered along the line segment joining
p, q and with points si ∈ Bi ∩Σ and s1 = p, sn = q, and so that,
1 ≤ d(si , si+1) ≤ 4R. Note (n − 1)2R ≤ d(p, q).



Minimal elements Σ ∈ T(M) are chord-arc

There exists a function f : [1,∞) → [1,∞) so that for
p, q ∈ Σ with 1 ≤ d(p, q) ≤ R, dΣ(p, q) ≤ f(R) · d(p, q).

Case A: Every ball of a fixed radius R− 1 in R3

intersects Σ.

Proof.

Let p, q ∈ Σ such that d(p, q) ≥ 4R. Let B1, . . . ,Bn be a chain of
closed balls of radius R centered along the line segment joining
p, q and with points si ∈ Bi ∩Σ and s1 = p, sn = q, and so that,
1 ≤ d(si , si+1) ≤ 4R. Note (n − 1)2R ≤ d(p, q). By the triangle
inequality,

dΣ(p, q) ≤
n−1∑
i=1

dΣ(si , si+1) ≤
n−1∑
i=1

f(4R)d(si , si+1)

≤ f(4R) · (n − 1)4R ≤ 2 f(4R) · d(p, q).



Case B: Σ has a plane of Alexandrov symmetry. The
proof of this case uses similar arguments as in Case A. This
completes the proof of the chord-arc property of minimal
elements.

Theorem (Annular End Theorem)

Suppose M has a plane of Alexandrov symmetry and at least
n > 1 ends. Then M has at least n annular ends. In
particular, M has a finite number of ends greater than 1 if and
only if it has finite topology.

Proof: Suppose M is a bigraph over a domain ∆ in the
x1x2-plane and M1,M2 ⊂ M are ends of M, which are
components in the complement of a vertical cylinder of radius
R0. Suppose Mi is a bigraph over ∆i ⊂ ∆.



Figure: σ1(1) is the short arc in the circle of radius R1. P1(1) is the yellow shaded
region containing σ1(1) and an arc of ∂1 in its boundary. By the Alexandrov reflection
principle and height estimates for CMC graphs, P1 lies 1/H close to any vertical
halfspace containing σ1(1).

After a horizontal translation and a rotation of M1 around the
x3-axis, we may assume that M1 lies in {(x1, x2, x3) | x2 > 0}. The
proof of the Halfspace Theorem shows that after another rotation,
we may also assume ∆1 also contains divergent sequence of points
pn = (x1(n), x2(n), 0) ∈ ∂∆1 such that x2(n)

x1(n) → 0 as n →∞ and
the surfaces M1 − pn converge to a Delaunay surface.



Figure: Choosing the points pn ∈ M1 and related data.

Our goal is to show M1 contains an annular end. This follows
from the next assertion.

Assertion

The regions between forming Delaunay surfaces near pn are
annuli.

The assertion holds if the segment a(n) ∩∆1 bounds a
compact domain in (above) ∆1.



Figure: Blowing a green bubble D̂(∂) on the mean convex side of M1.

Existence of green bubble implies that for some c > 0, the
CMC flux F of E2 = ∇x2 on the portion Xn of M1 over the
shaded rectangle satisfies F > c, contradicting a standard
application of the divergence theorem.



Figure: A picture of M1 with two bubbles blown on its mean convex side.


