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1 Introduction.

In [4], we developed the theory of properly embedded minimal surfaces in
M x R, where M is a compact Riemannian surface. One of the first results
in [4] is that a properly embedded noncompact minimal surface ¥ in M xR of
bounded Gaussian curvature is quasiperiodic in the following sense: given any
sequence of vertical translates (n) of 3, a subsequence of the ¥ (n) converges
on compact subsets of M xR to another properly embedded minimal surface.
By the curvature estimates of Schoen [8], every properly embedded stable
minimal surface in M x R has bounded curvature. Therefore, every properly
embedded noncompact stable minimal surface in M x R is quasiperiodic.
This quasiperiodicity property will be essential in proving the next theorem.
Throughout this paper, M denotes a compact Riemannian surface.

THEOREM 1.1 (Stability Theorem). Suppose that ¥ is a connected properly
embedded stable orientable minimal surface in M X R. Then, ¥ is one of the

surfaces described in (1)-(4) below:
1. X is compact and X2 = M x {t} for somet € R;

2. 3 is of the form v x R, where v is a simple closed stable geodesic in
M;

3. X is periodic under some vertical translation by height r, and so, has
a quotient X in M x S(r) where S(r) is a circle of circumference r.
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In this case, for every p € M,{p} x S(r) intersects ¥ transversely in
a single point and the orbit of the natural action of S(r) on M x S(r)
gives rise to a product minimal foliation of M x S(r). In particular, &
15 homeomorphic to M and is area minimizing in its integer homology

class;

4. X 1s a graph over an open connected subdomain of M bounded by a
finite number of stable geodesics, with each end of ¥ asymptotic to the
end of one of the flat vertical annuli described in (2);

5. The moduli space of examples described in (3) in the case M is ori-
entable is naturally parametrized by P(Hy(M)) x R*, where P(H;y(M))
consists of the primitive (non-multiple) elements in the first homology
group of M;

Our proof of the above Stability Theorem is based on a study of the
asymptotic geometry of properly embedded noncompact minimal surfaces in
M x R which have compact boundary. In [4], we apply these results to derive
the topological obstruction: A properly embedded minimal surface in M X R
has a finite number of ends.

More work along the same lines pursued here would probably give a proof
of the following conjecture. At the end of section 2, we prove this conjecture
in the special case that > has finite topology.

CONJECTURE 1.1. If one relaxes the hypothesis in Theorem 1.1 that > be
stable to the condition that ¥ has finite index and/or allow ¥ to have compact
boundary, then each of the finite number of ends of the surface is asymptotic
to one of the ends of the stable surfaces described in statements 2 and 3 of
Theorem 1.1.

2 The surfaces M(a,r).

Some of the stable minimal surfaces that arise in M xR are actually periodic,
which just means they are lifts of compact embedded minimal surfaces in M x
S(r) where S(r) is a circle with circumference r. It turns out that there are
large classes of these stable minimal surfaces, as described already in Theorem
1.1. The first step in proving Theorem 1.1 is the following description of these
special minimal surfaces. The proof of the next theorem also appears in [4].
Since we will refer to the proof later on, we include the proof here as well.
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THEOREM 2.1. Let M be a compact orientable Riemannian surface of genus
g. For each primitive homology class o € Hy(M) and each r € R, there
exists a compact embedded minimal surface M(a,r) C M x S(r) of genus g
such that its preimage or “lift” M(a, r) to M x R, together with the vertical
projection to M x {0}, is the oriented infinite cyclic covering space of M asso-
ciated to . Furthermore, the set of all vertical translations of M («, 1) yields
a product minimal foliation of M x S(r) and M (a, 1) is the unique minimal
surface in its homotopy class up to translation. Also, M (c,r) minimizes area
in its integer homology class.

Proof. We first recall the definition of the infinite cyclic covering space of M
corresponding to «. Consider the homomorphism from 7 (M) to Z induced
by homology intersection number with a. The covering space associated to
the kernel of this homomorphism is the infinite cyclic covering space associ-
ated to a.

Let 0 € S(r) = R/rZ denote the identity element in S(r). For a primitive
class « € Hi(M x {0}), it is straightforward to construct an embedding
]/\4\(04, r) of M into M x S(r) which satisfies:

1. ]/\/[\(Oé, r) is a graph over M x {0} under the natural projection 7: M X
S(r)y — M x {0};

2. If § is a simple closed curve with a N [F] = +1, then the lift 5 of g3

to ]\7(&,7’) represents the oriented class ([],1) in Hi(M x S(r)) =
Hy (M) x Hy(S(r));

3. M (a,7) N (M x {0}) is a simple closed curve which represents the
homology class a.

Let M(a,r) be a minimal surface of least-area in the homotopy or isotopy
class of ]\7(@, r)in M x S(r). The existence of M (v, r) follows from the results
in [1] or [5] and the fact that M (e, ) is an incompressible surface in M x.S(r).
By applying standard surface replacement arguments as first described by
Meeks and Yau in [6], one sees that any two distinct such least-area surfaces
in the homotopy class of M (cv, ) are disjoint. Therefore, vertical translations
of M(c,r) are disjoint from M («,r), and so, one obtains a foliation of M x
S(r) with leaves isometric to M (a,r) and which, topologically, is a product
foliation.



It follows from the existence of this minimal foliation that M («,r) is the
unique minimal surface in M x S(r) in the homotopy class of M («,r) up to
translation. Otherwise, there would be another such surface A C M x S(r).

Lift A to A in the infinite cyclic covering space M x S(r) of M x S(r)
corresponding to the subgroup m (M («,r)) and lift the “product” minimal

foliation to M x S(r). Note that some of the minimal leaves of this foliation

of M x S(r) are disjoint from A. Since the minimal foliation of M x S(r)
consists of compact leaves of the form {L(t) | t € R}, there is a largest ¢
such that L(ty) N A # . The maximum principle for minimal surfaces now
implies that L(t;) = A, which proves our assertion that A is one of the
translates of M («,r) in M x S(r).

A well-known application of the divergence theorem implies that a com-
pact leaf in an oriented codimension-one minimal foliation is area minimizing
in its integer homology class. This completes the proof of Theorem 2.1. [

The proof of the following proposition appears in [4]. We will use this
proposition to differentiate M («v,ry) and M (a, 1q), 71 # 1o, by their different
fluxes. It is motivated by the well-known special case where M is a flat torus;
in this case, the M(«,r) are “linear”.

PROPOSITION 2.1. Fixz any primitive homology class o« € Hy(M). For every
r >0, the surface M(a,r) has positive flux F(a,r). Furthermore, F(a,r) is
a continuous strictly increasing function from Rt to R,

3 Stable minimal surfaces with compact bound-
ary.

The next step in the proof of Theorem 1.1 in the Introduction is to classify the
end structure of the properly embedded stable orientable minimal surfaces.
The previous Proposition 2.1 will be an essential ingredient in proving this
classification of end structure, which is the main result of this section.

THEOREM 3.1. Suppose X is a noncompact orientable properly embedded sta-
ble minimal surface with compact boundary in M x R. Then, either every
end of X is asymptotic to an end of some “lift” or preimage M (o, 1) of a
M (av,r) described in Theorem 2.1 or some sequence of vertical translates of ¥
converges on compact subsets of M xR to I' xR, where I is a finite collection
of pairwise disjoint simple closed stable geodesics on M.



Proof. We may assume by lifting to a two-sheeted cover of M that M is
orientable. Since ¥ has bounded curvature, Corollary 3.1 in [4] states that
>} has a finite number of ends. Since the statement in the theorem only
concerns the ends of X, we will assume that ¥ has exactly one end. Without
loss of generality, we may also assume that 3 is contained in M X [0, 00) and
0¥ C M x {0}. For any divergent sequence of points p(n) in M x [0, 00),
let Tppy: M x R — M x R be the isometry which is downward vertical
translation by distance h(p(n)).

In our proof, we will frequently be concerned with two functions on 3.
The first of these functions is the Jacobi function J(p) = (N(p), &), where
N(p) is the unit normal vector field to ¥. The second function is the angle
function ©: ¥ — [0, 7], which measures the angle that the tangent spaces
along ¥ make with the vertical. Note that J = +sin(0). The following asser-
tion is an immediate consequence of the property that > does not contain any
compact subdomains with a nonzero Jacobi function having zero boundary

values; the Jacobi function in this application being J: ¥ — R.

ASSERTION 1. If there exists a divergent sequence of points ¢(n) € ¥ such
that J has a sign on 3(h(q(n)), where X(t) = X N (M x {t}), then, outside
some compact domain in X, © is never zero and J has a sign.

Since the surfaces T},(,)(X) have uniformly bounded curvature (8], they
have linear area growth by Theorem 3.1 in [4]. Thus, we may assume, after
choosing a subsequence, that this sequence of surfaces converges smoothly on
compact domains in M x R to a stable properly embedded, possibly discon-
nected, minimal surface ¥(00). The proof that ¥(oo) is stable is standard
if the convergence of the surfaces Tp,)(X) is with multiplicity one and easy
to check in the case the convergence has finite area multiplicity. In princi-
ple, one expects this smooth convergence to be of multiplicity one, which
would imply that ¥(oco) is itself orientable. Since ¥ has linear area growth,
the multiplicity of the convergence is bounded on each component of 3 (c0).
Furthermore, if any component of 3(co) were nonorientable then, by lifting
the discussion to a two sheeted cover of M, we would be able to assume that
every component of ¥(co) is orientable. Therefore, after possibly lifting, we
will assume that Y(co) is orientable.

Our first goal is to prove that ¥(00) is either the “lift” or preimage of some
M (a,r) or, after the choice of a possibly different sequence of translations,
¥(00) is of the form I'" x R, where I is a finite collection of pairwise disjoint
simple closed stable geodesics on M. This proof will be carried out with



the help of several assertions. Under the hypothesis in the next assertion,
our proof shows that »(oc0) is orientable, connected and of multiplicity one
without having to lift to a covering of M.

ASSERTION 2. Suppose ©: ¥ — [0, 7] is bounded away from zero on an end
representative of ¥. Then, ¥ is asymptotic to the top end of some translate

of M(a,r) C M x R for some « € Hy(M) and r € R*.

Proof. Let X(oo) be a limit for some sequence 7},,,)(X), where p(n) is a
divergent sequence of points in . In this case, our hypotheses on ¥ imply
m: X(o00) — M x {0} is a bounded gradient submersion, which implies it is
a covering space of M x {0}. Let py be a base point for M x {0}. Since ¥
has one end and this end is equivalent under vertical projection to the end
of an infinite cyclic covering space of M x {0} (see the proof of Proposition
3.1 in [4]), it is easy to check that ¥(oo) is connected, orientable and of
multiplicity one. Since Y(0o) is embedded and the points in the fiber 7= (pg)
can be linearly ordered by relative height, the holonomy representation shows
that 7 is the infinite cyclic covering space corresponding to some primitive
homology class o € Hy(M).

Assume for the moment that ¥(c0) is periodic under a vertical translation
by 7 € RT. Then, ¥(00) is a “lift” of a compact minimal surface ¥(c0) in M x
S(r). Since Y(oc) is a connected embedded surface representing a nonzero
homology class in Hy(M x S(r)), it represents a primitive homology class
(see [3]). Assume, after choosing an appropriate positive integer multiple

of r, that the induced map i,: Hy(X(00)) — Hi (M x S(r)) — Hi(S(r)) =
Z is onto. It is easy to check that there exists some finite Z,-cover of a
M(a,r/n) € M x S(r/n) that lifts to M x S(r) and such that the lift is
homotopic to ¥(co); see the proof of Proposition 3.1 or Proposition 4.1 in
[4] for an indication of how to find M (a,r/n). A slight modification of the
proof of Theorem 2.1, of the uniqueness of M («, r/n) in its homotopy class in
M x S(r/n), shows that the lifted surface to M x S(r) is the unique minimal
surface in its homotopy class. Thus, in the periodic case, we have shown that
Y (00) is a “lift” of some M («,r) to M x R.

We now show how to modify the previous special case, where ¥(00) is
periodic, to the general case where ¥(c0) is quasiperiodic. After a vertical
translation of ¥(00), we may assume for some small € > 0 that 3(oco) N (M x
[—&,¢]) consists of a finite number of annular graphs of bounded gradient
over a pairwise disjoint collection A of k smooth annuli in M x {0}. After
replacing the original sequence of points p(n) by a subsequence, we may
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assume that T, (3) N M x [—¢, €] consists of & minimal annuli that are
%-close to the annuli A in the C'-norm, thought of as vertical graphs over
their projection to A.

It is now clear that there exists a small Cl-perturbation ¥’ of 3, where
the perturbation occurs only in slabs M X [h(p(n)) — d(n), h(p(n)) + §(n)]
with §(n) > 0 and d(n) — 0 as n — oo, such that T}, (X) converges C' to
3(00) and Ty (X' N (M x [h(p(n) — 6(n)/2, h(p(n)) + 6(n)/2])) is equal to
Y(00) N (M x [=8(n)/2,d(n)/2]. For each n consider the compact C'-surface
¥(n) =X N(M x [h(p(n)),h(p(n+1)]) considered to be a compact surface
without boundary in M x S(h(p(n + 1)) — h(p(n))). As in the periodic
case, Y'(n) is homotopic to some lift M(n) of a translated M(«,r(n)) to
M x S(h(p(n+1))—h(p(n))). By lifting to the covering space of the ambient
three-manifold corresponding to the fundamental group of ¥'(n) and using
that M (n) and its translates lift as well to a product foliation of this covering
space, we can assume that M (n) intersects ¥'(n) at some point and nearby
this point of intersection ¥/(n) lies on one side of M (n). If ¥'(n) were minimal
near such a point of intersection, then, by the maximum principle, 3'(n) in
M x R would equal M (n) near the point.

Let Q(n) be a point of intersection of ¥'(n) and M (n) and, after a vertical
translation, assume that Q(n) € M x {0}. Let ¥'(n) and M (n) denote the
lifts of these surfaces to M x R. By construction, the 3'(n) converge to the
properly embedded minimal surface (oc0). If there is no lower bound on
the flux of the uniformly bounded curvature surfaces M(n), then the M (n)
would converge to a minimal lamination £ of M x R which is completely
horizontal; in other words, £ would be the foliation of M x R by the level
set surfaces M x {t}. At a limit point @ of the Q(n), there is a leaf of £
which intersects ¥(o00) locally on one side. This implies ¥(oc0) = M x {0},
which is false. Thus, for the M(a, r(n)) associated to the M(n), the r(n) are
bounded away from zero as are the fluxes of the M(n). By Theorem 1.1 in
4], this lower bound on the fluxes of the M (n) implies that there is an upper
bound on the linear area growths of the M (n).

Since the M (n) have local area and curvature estimates, a subsequence
of the M (n) converges to a properly embedded minimal surface, possibly
disconnected, one of whose components C' intersects ¥(oco) at some point
and, near this point, C' lies on one side of ¥(0c0). Hence, by the maximum
principle, C' C ¥(00), but ¥(c0) is connected and so C' = 3(c0). On the
other hand, for a sequence M (a, ;) in M xR, that has a limiting noncompact



component C' whose tangent planes stay a bounded distance away from the
vertical, there exists an upper bound on the numbers r;. This upper bound
and the previous lower bound imply that a subsequence of the r(n) converges
to some 7o, and so, C' = M(a, o) = %(00).

We have just proven that every possible ¥(c0) that arises as a limit of
vertical translates of ¥ is some translate of an M (e, 1), and so, by Proposition
2.1, the value of r is fixed. Actually, to see that one can apply Proposition 2.1,
one needs to know that « is also fixed. But a corresponds to the homology
class of [0X] € Hi(M x R) = H;(M) and so is fixed.

Suppose now that ¥ is not asymptotic to a fixed vertical translate of
M (c,7) and we will derive a contradiction. Since M (a,7) is periodic, we
may assume, after a fixed translate of ¥, that there exist regions W (n) =
M x [a(n),a(n) +1],a(n) — oo, in which X is +-close to M(a, r) in the C1-
norm. For any fixed t > 0, and n, k sufficiently large, X is also %—close to some
translate of M (a, ) in any region of the form M x [a(k)+¢, a(k)+1+t]. For
n large but fixed, consider the first ¢y, such that ¥ is not 1n—0 close to M (a, 1),
where we measure the distance as the local vertical distance, which is possible
since M (a, ) and ¥ are multigraphs. Since ¥ is %—close to a vertical translate
of M (a, ), we may assume that X lies “above” or “below” M (a, r) of distance
approximately <2 over the part of M (cr, ) at height a, + to. Let M (a,r,m)
be the portion of M(a,r) in the region M X [a,, a, + to] and let 2(n) be the
portion of ¥ which is a local graph over M (c,7,m) and intersects the region
M X lap,a, + to]. By local graph, we mean a graph in a vertical embedded
interval bundle over a domain in M (a,7,m).

Suppose now that (n) lies above the boundary of M(a,r,n) at height
an + to instead of below. Let M (cr,7,n) be the upward vertical translate of
M (a,r,n) by approximately 3 and so that M\(a, r,n) intersects ¥(n) trans-

versely. Now consider the portion X(n, +) of ¥(n) that lies above M (a, 7, n)
and has boundary d_(n) U d4(n), where 0, (n) consisting of the components
of ©(n) which are graphs over the boundary components of M(a,r,n) at
height a,, +to and J_(n) consists of the components contained in M (a,r,m).
Thus, X(n, +) is a nonnegative graph over a subdomain W (+) of ]\/Z(oz, r,mn)
with part of its boundary, OW (+), at a constant height of approximately
an + to + 2. Since X(n, +) is a nonnegative graph over W for every point
p of d_(n), the inner product of the outward pointing conormal to ¥(n,+)



with % is less than the inner product of the outward pointing conormal to
W at p with 2. Since 0, (n) is homologous via ¥(n, +) to d_(n) and d_(n) is
homologous to a level set of h on M (cr, 1), we see that the flux of ¥ is greater
than the flux of M (v, ), which is false. This contradiction proves that %
is asymptotic to the end of some fixed translate of M (a,7) and, thereby,
completes the proof of Assertion 2. n

Now we consider the case where there exists a divergent sequence of points
p(n) € ¥ where the angles the tangent planes make with the vertical converge
to zero as n — oo. In this case, the sequence T}, () yields, after replacing
by a subsequence, a limit surface 3(00) with a vertical tangent plane at some
point in M x {0}. The following assertion explains in part what the limit
¥.(00) is in this case.

ASSERTION 3. If the tangent plane to ¥(oc0) is vertical at some point, then
the component of (oc0) containing this point is of the form v x R, where ~y
is a simple closed stable geodesic on M.

Proof. Let f](oo) denote the component of ¥(co) with a vertical tangent
plane. Since i(oo) has bounded curvature, it is quasiperiodic. Suppose
f](oo) is not of the form v x R and we will derive a contradiction. For the
moment assume that i(oo) is periodic under vertical translation. In this
case let 7: M x R — M x R be the infinite order isometry that leaves (co)
invariant. Then, %(c0) = %(c0)/72 C (M x R)/72 is a compact orientable
minimal surface. Consider the vector field % on (M x R)/7%, which is still
well defined. Recall that J is the Jacobi function (N, %>. Let (+,00)
be the portion of ¥(co) where J is nonnegative; similarly, define ¥(—, 00).
Since (+, c0) is minimal and not a vertical flat annulus, it intersects the
vertical totally geodesic flat strip passing through the point p, with the same
vertical tangent plane in the same manner that a nonflat minimal surface in
R3 intersects a neighborhood of a point with its tangent plane. In particular,
it follows that (4, 00) and X(—, 0o) both have components with nonempty
interior with p, on their boundary. Thus, ¥(+,0c0) and ¥(—, 00) both are
compact and have nonempty interior. But then, the union of ¥(+, co) with
some small regular neighborhood of its boundary would be a smooth compact
subdomain of ¥(co) with boundary with strictly negative first eigenvalue for
the stability operator; here, we are using the fact that the first eigenvalue
of a compact domain decreases with enlargement and the first eigenvalue
of ¥(+,00) is zero. It follows that X(co) is unstable. In general, if F is a
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compact stable orientable minimal surface in a Riemannian three-manifold
M? and F 'is a component of the preimage under an infinite cyclic cover of
M3, then F is also unstable; the proof of this fact will be apparent when we
apply cut-off functions to handle the case where ¥(00) is only quasiperiodic.
Since ¥(00) is unstable and ¥(00) is a cyclic covering space of ¥(0o) which
is stable, we have arrived at a contradiction, which proves the assertion if
¥(00) is periodic.

Although i(oo) may not be periodic, the fact that i(oo) is the limit of
stable surfaces can still be used to obtain a contradiction in the spirit of the
proof in the periodic case. We now explain this technical modification of the
proof of the periodic case. R

Recall that 3(n) converges to 3(o0o) and the component (co0) has a nodal
line passing through height zero. We can assume for the following argument
that ¥(oco) is transverse to each M x {t} for 0 <t < 1. Let f(t) = f(p,t) be
a smooth function on M x [0, 00) that only depends on ¢ such that f(t) =0
fort <0, f(t)=1fort > 1 and f is monotone increasing for 0 < ¢ < 1. The
function f(t) can be chosen so that J; = f(t)J is smooth on ¥, where J the
Jacobi function of ¥ coming from 2. Let A = X(oc0) N (M x [0,1]).

Now, 3(n) is converging to ¥(co) uniformly on A, so the geometry of the
domains A(n) = XN (M x [h(p(n)), h(p(n) + 1)]) converge to the geometry
of A. In particular, for the stability operator L,

|/ LT () 1)¥ (1) |< C,
A(n)

for some C' > 0 and where ¥(¢) is a function on [h(p(n)), h(p(n))+1], which is
one on h(p(n)) and zero at h(p(n))+ 1 and extends smoothly to the constant
function one on the remainder of »(n).

Now, consider the nodal domain of J on ¥ N (M x [0,h(p(n)) + 1]) =
B(n), where J is non-negative. Denote this nodal domain by F(n). On the
points of 0F(n) that are interior to B(n), we have J = 0, and L(J) = 0
everywhere on ¥. Define a variation vector field Y (n) on F(n) to be J1N
on the part of F(n) in ¥ N (M x [0,h(p(n))]) and ¥(¢)JN on the part in
XN (M x [h(p(n)), h(p(n)) + 1]); here, N is the normal vector field to X.

Since Y(n) vanishes on 0F(n), the second variation formula for area
yields,

fmwmz—ﬁmuwmmwmwmm
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:_/ L(Jl)Jl—/ LOW()T)U(t)]
SN(M x[0,1]) A(n)

SN(Mx[0,1])

This implies Agi(n)(O) is bounded, independent of n.

Consider F'(1), a nodal domain in 3 between heights 0 and 1. Enlarge
F(1) by adding a small disk neighborhood in ¥, centered at a point of 0F (1)
with height strlctly between 0 and 1. Call F(1 (1) this enlargement. Consider
the function J on F(1), equal to J on F(1) and zero on F(1) — F(1). The
second variation of area of the normal variation of F(1 (1) defined by J equals
the second variation of area of F'(1) defined by J. Since the variation J of
F (1) has corners forming in its interior, there is another variation J on F (1)
with the same boundary values and which reduces the second variation of
area of F'(1) by some § > 0.

Now for N large, we can find positive integers k(n), k(n) — oo as n —
00, and disjoint regions F(1),..., F(k(n)) in ¥ N (M X [1, h(p(n))]), whose
geometry is close enough to that of F(1) so that in each F(k(j)), the second
variation of area induced from the variation J reduces the second derivative
of area of F(k(j)) by at least §/2. Call this variation J(k(j)) and note that
the J(k(j)) fit together smoothly to define a modification of Y (n) on the
enlarged F(n); call this Y (n).

For n large, the second derivative of area of this field Y (n) will be strictly
negative. This contradicts stability of 3. This contradiction completes the
proof of Assertion 3. O]

ASSERTION 4. If ©: ¥ — [0, 7] is not bounded away from zero, then there
exists a divergent sequence of points p(n) € 3 such that T},)% converges
smoothly to I' x R, where I' is a finite collection of pairwise disjoint stable

simple closed geodesics on M.

Proof. By the previous assertion, there exists a divergent sequence of points
q(n) € ¥ such that the sequence Tj,)(X) converges to a properly embedded
orientable stable minimal surface ¥(cc0) with at least one of the components
of ¥(oc0) having the form (1) x R, where (1) is a stable embedded geodesic
on M. In fact, X(o0) has a finite number of components of this type bounded
in number by the flux of ¥(c0) divided by L, where L is the length of the
shortest closed geodesic on M. Let A be a component of ¥(oo) which is not of
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this form. Then, by the previous assertion, the angle function ©: A — [0, 00)
is never zero. On the other hand by Assertion 2, © is not bounded away
from zero. Otherwise, A would have an end which is the end F of an infinite
cyclic cover of M embedded in M x R and E C (M — (1)) x R, which
is impossible. Repeating our previous argument implies that there exists a
sequence of points A(n) € A such that Tap,(X(00)) converges to X'(0o)
with a finite collection of components of the form ~ x R which contains the
previous such collection together with at least one more such component,
counting multiplicity. Since limit points of limit points of a sequence are
again limit points of the original sequence, there exists a divergent sequence
q(n) € ¥ such that Ty, converges to ¥'(c0). Since the flux of limits of X
are the same as the flux of ¥ and the lengths of closed geodesics are bounded
away from zero, a simple inductive argument proves that the sequence of
points p(n) can be chosen so that 7)) (2) limits to a X(oco) with every
component of the form v x R, which completes the proof of Assertion 4.

Assertion 4 completes the proof of Theorem 3.1. O]

The following assertions complement our knowledge of the one-ended sta-
ble orientable ¥ considered in the proof of Theorem 3.1. For example, we
will need the following Assertions 5 and 6 in the proof of the Stability Theo-
rem in the next section. Also, the next three assertions are likely to play an
important role in proving Conjecture 1.1 in the Introduction.

ASSERTION 5. If ©: 3 — [0, 7] is not bounded away from zero on the end
of 3, then every component of J71([0,1]) and of J~'([—1,0]) intersects the
boundary of ..

Proof. Let A be a component of J~1([0, 1]) which is disjoint from 3. By the
previous assertion, there exists a divergent sequence of points p(n) € ¥ such
that in the slab S(n) = M x ([h(p(n)) — 1, h(p(n))]), ¥ has the appearance
of almost vertical flat totally geodesic annuli, along which J|a is converging
to zero. Let J(n) be the function on A(n) = AN (M x [0, h(p(n))]) which is
equal to J on A(n) — S(n), and, on A(n) N S(n), is the product of J with
the linear cut off function on S(n) which is 1 at height h(p(n)) — 1 and zero
at height h(p(n)). Note that the second derivative of the area of A(n) with
respect to J(n) is some positive number €(n), where e(n) — 0 as n — oo.
However, we can enlarge A(n) slightly by adding on a compact disk R in X
to A(n) near some point of JA NIA(n); here, R does not depend on n. For
this new compact domain A’(n), we may assume by taking n large that R
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lies below h(p(n)) — 1. Let J(n) be the variation on A’(n) which is equal
to J(n) on A(n) and zero on R — A’(n). Since for the associated variation
of A’'(n), corners form in the interior of the surface, there exists a smooth
function f(n): A’(n) — [0,1] that has zero boundary values (in fact, f(n)
can be assumed to be equal to J(n) outside of some small neighborhood of
R) and such that the second derivative of area of the variation f(n)N of
A’(n) is bounded from above by e(n) — C, where C' > 0 is independent of n
for n large. But, ¢(n) — 0 as n — oo, which shows that A’(n) is unstable
for n large. This contradicts that X is stable, which completes the proof of
the assertion. O

ASSERTION 6. If outside of a compact subset of ¥ the function ©: ¥ — [0, 7]
is never zero and © is not bounded away from zero, then X is asymptotic to
v X R, where ~ is a simple closed stable geodesic.

Proof. By Assertion 4, there is a divergent sequence of points p(n) € X so
that T},,)X converges to I' x R, where I' is a collection of pairwise disjoint
geodesics on M. Let A be a small regular neighborhood of I" consisting of
annular components. If ¥ is not asymptotic to v x R, then, for n large,
771 (A) must contain compact components C'(n) which pass through height
h(p(n)), each of which is a covering space of one of the annular components
of A. Otherwise, there would be a smooth embedded arc o: [0,1] — A’, A" an
annular component of A, with ¢(0) and o(1) on different boundary compo-
nents of A" such that 771(c[0, 1]) contains a noncompact component &. Since
m: 0 — 7(o) C o([0,1]) is a covering space and ¥ has bounded curvature,
we may parametrize o by arc length, and so that &: [0,00) — 7~ *(o([0, 1]))
has tangent vector converging uniformly to the upward unit normal vector
field. From the proof of Assertion 3, it follows that for ¢ large, the tangent
spaces to the component F(t) of ¥ N h~'(5(t)) containing o are converging
to the vertical; in particular, there are no critical points of A: ¥ — R along
F(t). But then Upp, F(t), Ty large, would represent an annular end of ¥
that is asymptotic to some v x R. Since we are assuming that this does not
occur, each component of C'(n) is an annular graph over a component of A.

Now consider the curves of intersection of C'(n) with I' x R, which them-
selves are graphs over I'. Then, the flux of ¥ equals the flux of Vh across
these curves which is less than the total length of I', counted with multiplic-
ity. However, the flux of ¥ must be equal to the flux of ' x R, counted with
multiplicity, which equals the total length of I' counted with multiplicity.
This contradiction proves the assertion. Il

13



ASSERTION 7. If the end of ¥ is annular and ©: ¥ — [0, 7] is not bounded
away from zero, then X is asymptotic to v X R for some simple closed stable

geodesic v in M.

Proof. Arguing by contradiction, assume that the end of ¥ is not asymptotic
to any v x R. Without loss of generality, we may assume that > is an
annulus which intersects each level set M x {t},¢ > 0, in a simple closed
curve y(t). By the previous assertion, ©: ¥ — [0, 7] cannot be positive on
any end representative of 3. Assertion 1 implies that the zero set of J has a
noncompact component. In particular, for ¢ large, v(¢) contains a zero of J.

On the other hand, it follows from Assertion 4, that for every large ¢,
near 7(t) the surface ¥ is almost a flat vertical cylinder over I'(t) = m(v(t)),
where 7 is the vertical projection and where the supremum of the geodesic
curvature of I'(t) is converging to zero as t — oo. It follows that for any
divergent sequence t(n), I'(t(n)) has a convergent subsequence with a limit
which is a simple closed geodesic T'(00) whose length is equal to the flux of
Y. It remains to show that the limit I'(co) is unique.

Using the property that any such closed geodesic I'(co) is stable (no
Jacobi fields which change sign), it is not difficult to prove that such distinct
geodesic limits are disjoint. If I'; and I'y are two such limits, then an annulus
between them must be filled with in-between limits. Thus, the annulus A
between I'; and T’y is foliated by closed geodesics, in this case.

Consider a smooth submersion o: A — [0,1] with ¢7!(0) = I'; and
o7 1(1) = Ty. Let to € (0,1) be a regular value of o o w: ¥ — [0, 1], where
7 is the projection of M x R to M. Then, moo () is a one-manifold
with an infinite number of compact components and some component C,
diffeomorphic to S*, is homologous to d¥. Since C' can be chosen to have ¢
coordinates arbitrarily large and J is not zero along C', we contradict that
the zero set of J has a noncompact component. This contradiction proves
the assertion. O

THEOREM 3.2. Suppose ¥ is a properly embedded minimal surface in M x R
of finite genus, finite index and compact boundary which is possibly empty.
If M does not have genus one, then every end of M is asymptotic to v X R,
where 7y is a stable geodesic in M. If M has genus one, then every annular
end of ¥ is asymptotic to the end of some M(«a,r) or to an end of v x R,
where v is a stable geodesic in M.

Proof. Since ¥ has finite index, then outside of a compact set, ¥ consists
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of a finite number of stable components, each with a finite number of ends.
Since X has finite genus, > has a finite number of stable annular ends. The
theorem now follows immediately from Assertions 2 and 7. n

4 The proof of the Stability Theorem.

In Theorem 3.1, we described the asymptotic behavior of the ends of a stable
orientable properly embedded minimal surface with compact boundary in
M x R. We will now apply this asymptotic result and the assertions in
Section 3 to prove Theorem 1.1, which is stated in the Introduction.

Proof of Theorem 1.1. Assume that Y is not of the form v x R, where ~ is
a stable embedded geodesic on M. In a moment we will prove (Assertion 8)
that the angle function ©: ¥ — [0, 7] is never zero. Assume this property
and we will show that Theorem 1.1 follows.

First note that, by Theorem 3.1 and Assertion 6, each of the top ends
of 3 is asymptotic to a translate of some M («,r), where o« € Hy(M) and
r € R*, or each of the top ends is asymptotic to a vertical annulus. A
similar statement holds for the bottom ends of ¥. Thus, there are two cases

to consider.

Case 1. Some top and some bottom end of ¥ are each not asymptotic to

a vertical flat annulus. In this case, ¥ is the translation of some M (a,7),
where o € Hy(M) and r € RT.

Proof. It follows from Theorem 3.1, that each of the finite number of top ends
of ¥ is asymptotic to a translate of some M (aq,71) and each of the bottom
ends is asymptotic to some translate of M (ag,19), where aq, 11, g, 79 are fixed
(a mixture of these types of ends is not possible, since they would intersect
but 3 is embedded). Since the projection m: ¥ — M x {0} is a submersion
of bounded gradient, 7: X — M x {0} is an infinite cyclic covering space
corresponding to some fixed o € H;(M). This implies ¥ has exactly one
top end and one bottom end. By Theorem 3.1, each of the two ends of ¥ is
asymptotic to a translate of one of the ends of a M(«,r), where « is fixed.
By Proposition 2.1, 7 is also fixed. Assume now that the top end of ¥ is
asymptotic to M («,r) and we shall prove that ¥ is M(a, 7).

If ¥ is not M (cr,7), then, after a slight downward vertical translation of
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M (a, 1), we would obtain a new surface M (v, ) which intersects ¥ trans-
versely in a nonempty compact set. There is a representative ¥(+) of the
top end of ¥ which is a graph above the top end representative M (a, 7, +) of
M (cr, ) and the bottom end of M (cr, 7) has a representative which is disjoint
from the lower end of 3. Since both of the projections 7: M x {0} — M x {0}
and m: ¥ — M x {0} are isomorphic infinite cyclic covering spaces corre-
sponding to the same primitive element of Hi(M), we can globally express
Y. as a graph over ]\//T(a,r) of a function f: ]\//.7(04,7‘) — R. Furthermore,
we may assume that f has a zero at some point of M (a,7), f is positive
on M (v, 7, +) and asymptotic to a nonzero constant C' on the lower end of
Y. The maximum principle implies that C' cannot be positive. But, if C' is
negative, then, by considering the smooth domain f~([0, 00)), we see, using
the argument at the end of the proof of Assertion 2, that the flux of X is
greater than the flux of M («, r), which is false. This contradiction completes
the proof of Theorem 1.1 in Case 1, when no top end and no bottom end of
Y. is asymptotic to an end of a vertical annulus of the form v x R, where ~
is a stable embedded geodesic on M. Il

Case 2. The top ends or the bottom ends of 3 are asymptotic to vertical flat
annuli. In this case, ¥ is a graph over a domain in M x {0} bounded by a
finite number of stable embedded geodesics.

Proof. Our goal is to prove that X is a graph. If ¥ is not a graph, then there
are two points (p,t1), (p,t2) € ¥ with ¢; < to. Let X(t) denote the vertical
translation of ¥ downward by ¢ € RT. Thus, we have ¥ N X(ty — t;) # O.
Let tg € [0,00) be the infimum of the t € RT such that ¥ N X(t) # @. Note
that by the maximum principle, ¥ N X(ty) = O or ¥ = X(tp). If ¢ty > 0 and
Y. = X(tp), then X would be periodic and represent an infinite cyclic covering
space of M x {0}, which it could not be if it had any ends asymptotic to the
ends of vertical annuli. Hence, if ¥ = X(¢y), then t; = 0. Therefore, there
exists a sequence t, converging to to from above such that ¥ N X(¢,) # O
and the sets ¥ N X(¢,) do not have a finite limit point. The reason that the
¥ N X(t,) do not have a limit point is that otherwise, ¥ would be periodic,
which is a possibility we have already ruled out.

It follows from the discussion in the previous paragraph and the fact that
the ends of ¥ are asymptotic to ends of special periodic minimal surfaces, that
either some top end E of ¥ and some top end E(ty) of ¥(ty) are asymptotic

16



or some bottom end of 3 is asymptotic to some bottom end of ¥(¢y). Assume
the former case and we will derive a contradiction. There are two cases to
consider. If the top ends of X are asymptotic to translates of the top end
of some M (c,r), then we may assume that F is a small (negative) vertical
graph over E(ty) and asymptotic to it at infinity. However, in this case, after
a small upward translation E’ of E, the end of E’ is a small positive graph
over an end of E(ty) and the compact boundary of E’ is a small negative
graph over the boundary of E(ty). As in the previously considered case, this
graphical property implies that the flux of F is different from the flux of
E(to) but the fluxes are the same. This contradiction solves this first case.

Now assume the second possibility: there is a top end E of ¥ which is
asymptotic to a top end E(ty) of () and both E and E(t,) are asymptotic
to the top end of v x R, where ~ is a stable embedded geodesic on M.
Under our assumption that © is never zero on >, we can choose E to be a
graph over a one-sided annular half-open neighborhood A x {0} of v x {0} in
M x {0}. Since E(t() has the same graphical property and we have chosen
E to intersect any small downward translation of E(ty), we may assume that
E and E(ty) are both graphs over the same half-open neighborhood A x {0}
of ¥ x {0} in M x {0}. As in the previous paragraph, we can take a small
vertical upward translation E’ of E, so that E'NE(ty) # @ and the boundary
of E' is still a negative graph over the boundary of E(ty). In this case, we
will adapt the flux argument used in the previous paragraph to show that
the fluxes of £’ and E(ty) are not the same, which will give a contradiction,
since their fluxes are equal to the length of v. We now carry out this flux
argument.

Initially, we could have taken the boundary of F, and hence E’, to be
a simple closed curve in some level set of h: M x R — R. Let 0 be the
boundary of E’ at height t;. Consider the curves v(t) = v x {t} on the
annulus v x R. Let W be the three-manifold which is the component of
(A x [t1,00)) — (E" U E(ty)) which has boundary A x {t;}. Let W be the
closure of W in M x R and note that W contains «y X [t;, 00) in its boundary.
W satisfies the good barrier property of Meeks-Yau [7] for solving Plateau
problems. It follows that there exists a least-area minimal annulus A(t) in
W with boundary dU~(t). By the geometric proof of Rado’s theorem in [2],
it follows that A(t) is a graph over AU (y x {0}) = A. These graphs converge
to a graph A(co) C W with boundary 0 and which is asymptotic to the top
end of 7 x R. But A(o0) is not equal to E’ since E’ is not contained in W.
It follows that the flux of A(oc0) is less than the flux of £’ but they are both

17



equal to the length of v. This contradiction proves that in Case 2, ¥ is the
required graph. O

To complete the proof of Theorem 1.1 it remains to prove the following
assertion.

ASSERTION 8. If the angle function ©: 3 — [0, 7] is zero at some point, then

it is identically zero and ¥ is of the form ~ x R.

Proof. Clearly, if © is identically zero, then > = v x R, where ~ is a stable
embedded geodesic on M. Assume now that © is not identically zero. Let
Z = J71(0) be the nodal line set for J and assume Z N (M x {0}) # O.
Let ¥(+) = XN (M x [0,00)) and (=) = ¥ N (M x (—00,0]). We first
consider the easier-to-understand case where outside any compact subset
of ¥(+4) and any compact subset of ¥(—), © is not bounded away from
zero. With this assumption, Assertion 4 implies that there exist divergent
sequences s(n) € Rt and t(n) € R~ such that X(+)N (M x [s(n)—n, s(n)+n]
and X(—) N (M x [t(n) — n,t(n) + n]) are smaller and smaller graphs over
regions on 'y X R and I'_ x R, respectively, where I', and I'_ are fixed
collections of pairwise disjoint stable geodesics on M. Let A be one of the
nodal components of J~1[0, 1] with a point of A at height 0 and let A(n) =
AN M x [t(n),s(n)]. Then, the proof of Assertion 5 applies, using cut off
functions near heights ¢(n) and s(n), to show that a compact enlargement
ﬁ(n) of A(n) near height zero is an unstable domain, which contradicts the
stability definition for .

Our goal now is to adapt the proof given in the special case considered
above, which used cut off functions and Assertion 5, to obtain an unstable
domain A(n) C ¥. By the proof given above, we need to deal with the case
where ¥ contains an end E where © is greater than some € > 0. So, assume
E is such an end for some ¢ > 0. By Assertion 2, E is asymptotic to the end
of some translate of an M («,r). Without loss of generality, assume that F
is asymptotic to the top end of M (cr, 7). Assume that § > 0 is chosen small
enough so that a closed d-neighborhood W above F is foliated by vertical
translates of F of height ¢ for 0 <t <.

Choose a simple closed geodesic in the homology class of a and let us
call this curve v as well. Let A = a x [0,00), and consider £ N A. Since
E is bounded away from the vertical if we are above some height ¢y, then,
after the removal of a compact subdomain of E, we may assume that £ N
A = U,>1C(n), where the C(n) are simple closed curves ordered by their
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relative heights and with C'(1) = JF. Let E(n) be the compact domain
in £ bounded by C(1) U C(n), and for each n, let W(n) be the region in
M x R consisting of all the upward vertical translates of E(n) by height
s, 0 < s < 4. Denote by C(1,6) the vertical translate of C'(1) at height d.
Clearly, W(2) c W(3) C ... C W(n) and |J,~, W(n) = W.

Notice that OW(n) is a good barrier for solving Plateau problems. In
particular, there is a least-area surface F'(n) in W(n) with boundary C(1, §)U
C(n). Since C(1,0) U C(n) are vertical graphs, the proof of Rado’s theorem
2] shows that F'(n) is unique and is a minimal graph over E(n). We can
use F'(n) as a barrier to solve the Plateau problem in W(n + 1) to find a
least-area surface F'(n + 1) with boundary C(1,d) U C(n + 1). Hence, the
F(n) are monotone in the sense that the graph F(n + 1) is above F(n) over
E(n). Each of the graphs is bounded above by ¢. Hence, there is a minimal
graph limit F'(co) in W with 0F(oc0) = C(1,9).

We observe that F(co) is bounded away from the vertical. First, we
see that there are no points on F'(co) with a vertical tangent plane. For if
p € F(00) were an interior point with a vertical tangent plane, then F(c0) is
tangent to a vertical flat strip of the form xR at p, where (3 is a geodesic arc
in M. Clearly, F'(c0) # xR in a neighborhood of p, since F(c0) is a graph,
so F(00) and 8 x R have a saddle-point type contact in a neighborhood of
p. In particular, in any neighborhood of p, there are points of F'(co) where
the normal points up, and other points where the normal points down. This
is impossible since F(c0) is a graph.

Next, suppose there is some sequence p, in F'(co) with the tangent planes
at p, converging to the vertical. Notice that the p, are not converging to
OF(00) = C(1,6), since the F(n + 1) are above F(n) at C(1,6), and so, one
has gradient estimates there. Since F'(00) is stable, it has curvature estimates
8]; i.e., for each g € F(00), of distance at least one from 0F (00), there exists
a &g > 0 such that F'(oc0) is a graph of bounded geometry over the dy disk in
T,(F(00)), 0o is independent of g. Choose our original ¢ so that § < dy/2.

Now a subsequence of the §-neighborhoods of p, in F(c0), translated to
height 0, converges to a minimal surface () which is vertical at lim p,, = p(00).
But then, the same argument as before - when F'(0co) was assumed to have a
vertical point - shows that the local graphs of F'(co) at p, have points where
the normal points up, and points where the normal points down.

There is one remark we should add to this argument. If @) is itself a
vertical surface of the form  x R, § a geodesic of M, then the fact that the
local graphs of F'(c0) at p, converge uniformly to @ in the dp-neighborhood
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of p(o0), and § < %0, implies that the local graph would leave W (above or

below). This is impossible, hence, F'(c0) is bounded-away from the vertical.

By Assertion 2, F'(c0) is asymptotic to a translate of some M (oq,71).
Clearly, a = ay. Also, r; = r, since F'(c0) is a bounded vertical graph over
M (a, r) and this would fail to be true if 7 # ry.

The previous discussion also applies to C(1,s), the vertical translation
of C(1) at height s. We conclude that the minimal graphs F(n,s), with
boundary C(1, s) UC(n), converge to the vertical translation of E by height
S.

Let J(n) be the Jacobi function on F(n) arising from the variation by
the minimal surfaces F'(n,s). Clearly, J(n) defined on E(n) converges to J
on F, as n — oo.

We now complete the proof of the assertion that if J has a zero, then it
is identically zero. As before, assume J is not identically zero and we will
find an unstable compact domain A(n) C X. As we have shown before, if ©
is not bounded away from zero on some top end of ¥ and on some bottom
end of ¥, then © is identically zero. Assume now that © is bounded away
from zero on some top end and on some bottom end of ¥. The proof of the
case where © is bounded away from zero on some end (say top end) and O is
not bounded away from zero on some end (say a bottom end) is essentially
the same proof as the other two cases and will be left to the reader.

Let A be one of the components of J~1[0,1] with part of its boundary
at height zero. A has a finite number of top ends and a finite number
of bottom ends, each of which is bounded away from the vertical. Let E
be one of the top ends of A; as before, we assume « is chosen to be a
geodesic, O0E = C(1), E = |J,,», £(n) and the Jacobi fields J(n) on E(n) are
converging to J on E. -

Hence, for any € > 0 and n sufficiently large, J(n) is e-close to J, in the
C?-norm on a fixed neighborhood of C'(1) in E. Clearly, this analysis applies
to all the top and bottom ends of A.

Let A(n) be the compact exhaustion of A whose boundary consists of the
C(n) curves on each end. It follows from the previous discussion that, for
any n > 0 and n sufficiently large, there is a smooth nonnegative function
f which is zero on 0A(n) and f is a Jacobi function outside of some small
neighborhood of the union of the C'(1)-curves on each end, and the second
variation of area of A(n) with respect to fNN is less than 7.

Now by enlarging A(n) by adding on a small neighborhood of its boundary
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near height zero, we obtain a domain A(n) which for n large is unstable.
(The extension of normal variation fN by zero on A(n) — A(n) has corners

forming.) This completes the proof of Assertion 8 and the proof of Theorem
1.1. O
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