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Abstract

In this paper we prove a local removable singularity theorem for certain minimal
laminations with isolated singularities in a Riemannian three-manifold. We also ob-
tain descriptive structure theorems of the extrinsic geometry of an embedded minimal
surface in a Riemannian three-manifold in a small intrinsic neighborhood of a point of
concentrated curvature or topology. The local structure theorem in the concentrated
topology setting includes a new limit object which we call a minimal parking garage
structure of R?’, whose beginning theory we also develop. Our local removable singu-
larity theorem is the key result used in our proof that a complete embedded minimal
surface in R? with quadratic decay of curvature has finite total curvature. We then ap-
ply this theorem and our local structure theorems to obtain compactness, descriptive
and dynamics-type results concerning the set of limits under dilations of a complete
embedded minimal surface in R®. Finally, we apply the local removable sigularity the-
orem and local structure theorems to prove two global structure theorems for certain
possibly singular minimal laminations of R?.
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1 Introduction.

Fundamental theorems on the nonexistence of singularities in mathematical and physi-
cal problems represent cornerstones for building powerful theories which can then become
stepping stones to future theoretical advances and which can create the insights needed for
deep applications to other related areas. Recent work by Colding and Minicozzi [9, 8, 3, 2]
on removable singularities for certain limit minimal laminations of R?, and subsequent



applications by Meeks and Rosenberg [36, 32] demonstrate the fundamental importance
of these types of removable singularities results for obtaining a deep understanding of
the geometry of complete embedded minimal surfaces in three-manifolds. Removable
singularities theorems for limit minimal laminations also play a central role in our pa-
pers [29, 30, 27] where we obtain topological bounds and descriptive results for properly
embedded minimal surfaces of finite genus in R?.

In this article, we will extend some of these results. Our first goal is to obtain a
useful local removable singularity theorem for certain minimal laminations with isolated
singularities in a Riemannian three-manifold. We view this local result as an important
tool in developing a general removable singularities theory for possibly singular minimal
laminations of R3. We also obtain a number of applications of this result to the classical
theory of minimal surfaces, that we explain below.

Another important building block of this emerging theory is a basic compactness result
which has as limit objects properly embedded minimal surfaces in R?, minimal parking
garage structures on R® and possibly certain singular minimal laminations of R® with
restricted geometry; the concept of parking garage structure is developed at the beginning
of Section 11. This compactness result is Theorem 11.1. It gives us for the first time a
glimpse at the extrinsic geometric structure of an arbitrary embedded minimal surface in a
three-manifold in a small intrinsic neighborhood of a point of concentrated topology. The
results in the recent series of papers [9, 8, 3, 2] by Colding and Minicozzi and the recent
minimal lamination closure theorem by Meeks and Rosenberg [32] also play important
roles in deriving this basic compactness result.

An important application of our local removable singularity result is a fundamental
characterization of all complete embedded minimal surfaces of quadratic decay of curvature
(see Theorem 1.6 below). This characterization result leads naturally to a dynamical
theory for the space D(M) of nontrivial dilation limits of any properly embedded minimal
surface M C R? which does not have finite total curvature. In Section 10, we indicate how
this dynamical theory can be used as a tool to obtain insight and simplification strategies
for solving several fundamental outstanding problems in the classical theory of minimal
surfaces. It is our hope that these dynamics on D(M) will soon be better understood and
that they can eventually be refined into a tool for proving the following conjecture.

Conjecture 1.1 (Fundamental Singularity Conjecture (Meeks, Pérez and Ros))
Suppose S C R? is a closed set whose 1-dimensional Hausdorff measure is zero. If L is a
minimal lamination of R® — S, then £ has the structure of a CY*-minimal lamination of
R3.

Since the union of two intersecting planes is a singular minimal lamination of R?
whose singular set is the intersecting line, the above conjecture represents the best possible
result. We now give a formal definition of a singular lamination and the set of singularities
associated to a leaf of a singular lamination.



Given an open set A € R® and N C A, we will denote by Nt the closure of N in A.

Definition 1.2 A singular lamination of an open set A C R® with singular set S C A is
the closure Z* of a lamination £ of A — S , such that for each point p € S, then p € ZA,
and in any open neighborhood U, C A of p, i n U, fails to have an induced lamination
structure in U,. For a leaf L of L, we call a point p € I'NnSa singular leaf point of L,
if for some open set V' C A containing p, then L NV is closed in V — S, and we let Sp,
denote the set of singular leaf points of L. Finally, we define ZA(L) = L USy, to be the
leaf of L associated to the leaf L of L. In particular, if for a given leaf L € £ we have
T NS =0, then L is a leaf of £°.

Conjecture 1.1 is motivated by a number of results that we obtain throughout this
article. In Section 12, we shall prove the following general Structure Theorem for possibly
singular minimal laminations of R? whose singular set is countable (see Theorem 1.3
below), along with a related result, Theorem 12.2 for certain possibly singular minimal
laminations that arise as limits of sequences of embedded minimal surfaces. Theorem 12.2
is applied in [27] to prove the existence of bounds on the topology/index of complete
embedded minimal surfaces in R® with finite-topology /finite-index, solely in terms of their
genus. The Structure Theorem below is useful in applications because of the following
situation. Suppose that L is a nonplanar leaf of a minimal lamination £ of R* —S. In this
case, its closure L has the structure of a possibly singular minimal lamination of R, which
under rather weak hypotheses, can be shown to have a countable singular set. Then, if L
can also be shown to have finite genus, then statement 7 of the next theorem demonstrates
that £ = £ = {L} is a smooth properly embedded minimal surface in R3.

Theorem 1.3 (Structure Theorem for Singular Minimal Laminations of R?)

Suppose that L = L USisa possibly singular minimal lamination of R® with a countable
set S of singularities. Then:

1. The set P of leaves in L which are planes forms a closed subset of R3.

2. The set Pum of limit leaves of L is a collection of planes which form a closed subset
of R3.

3. If P is a plane in P —Pum, then there exists a d > 0 such that for the d-neighborhood
P(5) of P, one has P(6)N L = {P}.

4. If pe S and p & UpepP, then for e > 0 sufficiently small, L(p,e) = LN B(p, ) has
finite area and contains a finite number of leaves, each of which is properly embedded
in B(p,e) —S. Each point of B(p,e) NS represents the end of a unique leaf of L(p, €)
and this end has infinite genus. In particular, if p is an isolated point of S, then € can



be chosen so that L(p,e) consists of compact leaves and a single smooth noncompact
leaf with infinite genus and one end.

Now suppose that the lamination £ of R? — S contains at least one nonplanar leaf L.

5. Either L is a leaf of L, proper in R® and L is the only leaf of L, or else L has the
structure of a possibly singular mzmmal lammatzon of R® (with singular set contained

in L NS) which consists of the leafﬁ ( ) together with a set P(L) consisting of
one or two planar leaves of L. In particular, L is the disjoint union of its leaves and
it contains a nonempty set of planar leaves, if it has more than one leaf.

3
6. If L # {L}, then the leaf ZR (L) of L is properly embedded in a component C(L) of
R®—P(L) and C(L)NL = L. Furthermore, if P is a plane in P(L), then every open

e-slab neighborhood P(e) of P intersects the leafﬁ (L) in a connected set and the
connected surface L N P(e) has infinite genus.

7. If L has finite genus, then L is a smooth properly embedded minimal surface in R3 (thus
L=L={L} and S = 0).

Conjecture 1.1 has a global nature, because there exist interesting minimal laminations
of the open unit ball in R? punctured at the origin which do not extend across the origin,
see Section 2. In hyperbolic three-space H?, there are rotationally invariant global mini-
mal laminations which have a similar unique isolated singularity. The existence of these
global singular minimal laminations of H* demonstrate that the validity of Conjecture 1.1
depends on the metric properties of R3. However, we do obtain the following remarkable
local removable singularity result in any Riemannian three-manifold NV for certain possibly
singular minimal laminations.

Given a three-manifold N and a point p € N, we will denote by By (p,r) the metric
ball of center p and radius r > 0.

Theorem 1.4 (Local Removable Singularity Theorem) Suppose that L is minimal
lamination of a punctured ball By (p, ) — {p} in a Riemannian three-manifold N. Then
LNByx(p,7) extends to a minimal lamination of By (p,r) if and only if there exists a
positive constant ¢ such that |Kp|d?> < c in some subball, where |K.| is the absolute
curvature function on L and d is the distance function in N to p (equivalently by the
Gauss theorem, for some positive constant ¢, |Az|d < ¢, where |Az| is the norm of the
second fundamental form of L). In particular:

1. The sublamination of L consisting of the closure of any collection of stable leaves
extends to a minimal lamination of By (p,r).



2. The sublamination of L consisting of limit leaves extends to a minimal lamination
Of B]\/' (pv T) .

3. A possibly singular minimal foliation F of N with at most a countable number of
singularities has empty singular set.

We remark that the natural generalizations of the above local removable singularity
theorem and of Conjecture 1.1 fail badly for codimension-one minimal laminations of R",
for n = 2 and for n > 3. In the case n = 2, consider the cone C over any two nonatipodal
points on the unit circle. The punctured cone C — {0} is totally geodesic and so the norm
of the second fundamental form is zero but C' is not a smooth lamination at the origin. In
the case n = 4, let C' denote the cone over the Clifford torus S'(v/2) x S*(v2) ¢ S* ¢ R%.
The punctured cone C' — {6} is a properly embedded minimal hypersurface of R* — {6}
which does not extend across {0} to a minimal hypersurface of R*. Since the norm
of the second fundamental form of the Clifford torus is constant, then the norm of the
second fundamental form of C' — {0} multiplied by the distance function to the origin
is also a constant function on C' — {0}. For n > 4, one can also consider cones over any
embedded compact minimal hypersurface in S*~! which is not an equator. These examples
demonstrate that Theorem 1.4 is precisely a two-dimensional result.

Every complete embedded minimal surface in R? with bounded curvature is prop-
erly embedded (Meeks and Rosenberg [36]). The next theorem shows that any complete
minimal surface in R? that is not properly embedded, has natural limits under dilations,
which are properly embedded minimal surfaces. By dilation, we mean the composition of
a homothety and a translation.

Theorem 1.5 (Local Picture on the Scale of Curvature) Suppose M is a complete
embedded minimal surface with unbounded curvature in a homogeneously reqular three-
manifold N. Then, there exists a sequence of points p, € M and positive numbers €, — 0,
such that the following statements hold.

1. For all n, the component M, of By (pn,en) N M that contains p, is compact with
boundary OM,, C OBN(pn,en)-

2. Let N\, = /|Kn,|(pn). The absolute curvature function |Kyy,| satisfies 7”1(:[”' <
1+ % on M,,, with lim,,_,, ex A\, = 0.

3. The metric balls \yBy (pn, €n) of radius Ape, converge uniformly to R with its usual
metric (so that we identify p, with 0 for all n), and, for any k € N, the surfaces
MM, converge C* on compact subsets of R® and with multiplicity one to a connected
properly embedded minimal surface My in R® with 0 € My, |Kar | < 1 on My
and | K |(0) = 1.



In the above theorem, we obtain a local picture or description of the local geometry of
an embedded minimal surface in an extrinsic neighborhood of a point p,, of concentrated
curvature. Certainly, if for any positive € the intrinsic e-balls of a minimal surface are not
always disks, then the curvature blows up as ¢ — 0 at some points in these nonsimply
connected intrinsic e-balls. It follows in this case that the injectivity radius of the sur-
face is zero, i.e. there exists a divergent sequence of points where the injectivity radius
function of the surface tends to zero; such points are called points of concentrated topol-
ogy. In Section 11 we prove a local picture theorem on the scale of topology for complete
embedded minimal surfaces with zero injectivity radius, which has some similarities with
Theorem 1.5.

A complete Riemannian surface M is said to have intrinsic quadratic curvature decay
constant C > 0 with respect to a point p € M, if the absolute curvature function |K ;| of

M satisfies
C

< ——,
| - dM(pv Q)z

for all ¢ € M, where dj; denotes the Riemannian distance function. Note that if such
a Riemannian surface M is a complete surface in R?® with p = 0 € M, then it also
has extrinsic quadratic decay constant C' with respect to the radial distance R to 0, i.e.
|Ky|R? < C on M. For this reason, when we say that a minimal surface in R® has
quadratic decay of curvature, we will always refer to curvature decay with respect to the
extrinsic distance R to 0, independently of whether or not M passes through 0.

| K (q)

Theorem 1.6 A complete embedded minimal surface in R® with compact boundary (pos-
sibly empty) has quadratic decay of curvature if and only if it has finite total curvature. In
particular, a complete connected embedded minimal surface M C R® with compact bound-
ary and quadratic decay of curvature is properly embedded in R3. Furthermore, if C is the
mazimum of the logarithmic growths of the ends of M, then

lim sup |Kj|R'=C?
R—0co p1_B(R)

where B(R) denotes the extrinsic ball of radius R centered at 0.

Theorem 1.6 and the techniques used in its proof give rise to the following compactness
result. Given r > 0, S?(r) denotes the sphere of radius r centered at the origin.

Theorem 1.7 For C' > 0, let F¢ be the family of all complete embedded connected min-
imal surfaces M C R® with quadratic curvature decay constant C, normalized so that the
mazimum of the function |Kyf|R? occurs at a point of M N S?(1). Then,

1. If C < 1, then F¢ consists only of flat planes.



2. Fy consists of planes and catenoids whose waist circle is a great circle in S*(1).

3. For C fized, there is a uniform bound on the topology and on the curvature of all
the examples in Fc. Furthermore, given any sequence of examples in Fo of fized
topology, a subsequence converges uniformly on compact subsets of R® to another
example in Fo with the same topology as the surfaces in the sequence. In particular,
Fc is compact in the topology of uniform C*-convergence on compact subsets.

In the next theorem we will examine the set of all nonflat properly embedded minimal
surfaces in R?® which arise as dilation limits of a fixed properly embedded minimal surface.
In order to clarify its statement, we need some definitions.

Definition 1.8 Let M C R? be a nonflat properly embedded minimal surface. Then:

1. M is periodic, if it is invariant under a nontrivial translation or a screw motion
Symmetry.

2. M is translation-periodic, if there exists a divergent sequence {p,}, C R3 such that
{M — pn}n converges on compact subsets of R? to M (note that every periodic
surface is also translation-periodic, even in the case the surface is invariant under a
screw motion symmetry).

3. M is dilation-periodic, if there exists a sequence of homotheties {h,, },, and a divergent
sequence {p,}, C R3 such that {h,(M —p,)}, converges in a C'-manner on compact
subsets of R® to M. Since M is not flat, it is not stable and, thus, the convergence
of such a sequence {h,(M — p,)}, to M has multiplicity one by Lemma 3.4.

4. Let D(M) be the set of properly embedded nonflat minimal surfaces in R® which
are obtained as C'-limits (these are again limits with multiplicity one since they are
not stable, see Lemma 3.3 in [36]) of a divergent sequence of dilations of M (i.e. the
translational part of the dilations diverges). A nonempty subset A C D(M) is called
D-invariant, if for any ¥ € A, then D(X) C A. A D-invariant subset A C D(M)
is called a minimal D-invariant set, if it contains no proper nonempty D-invariant
subsets. We say that ¥ € D(M) is a minimal element, if ¥ is an element of a
minimal D-invariant subset of D(M).

The following result deals with the space D(M) of dilation limits of a properly embed-
ded minimal surface M C R3.

Theorem 1.9 (Dynamics Theorem) Let M C R? be a nonflat properly embedded min-
imal surface. Then, D(M) = @ if and only if M has finite total curvature. Now assume
that M has infinite total curvature, and consider D(M) to be a metric space with respect
to a distance function induced by the Hausdorff distance on compact sets of R®. Then:



1. Di(M)={2eDM)|0e%, |[Kg| <1, |Kg|(0)=1}# @, D;(M) is a nonempty
compact subspace of D(M), and the induced topology on Di(M) agrees with the
topology of uniform C*-convergence on compact subsets of R® for any k € N.

2. Now consider D(M) with the topology of uniform C*-convergence on compact sets.
For any ¥ € D(M), D(X) is a closed set of D(M). If A C D(M) is a D-invariant
set, then its closure A in D(M) is also D-invariant. Furthermore, any minimal
D-invariant set is closed in D(M).

3. Any D-invariant subset of D(M) contains minimal elements.

4. Let A C D(M) be a D-invariant subset. If no ¥ € A has finite total curvature,
then Ay ={X €A |0eX, |Ky| <1, |Kx|(0) =1} contains a minimal element of
D(M) (which, in particular, is a dilation-periodic surface of bounded curvature).

5. If a minimal element ¥ of D(M) has finite genus, then either ¥ has finite total
curvature, or X is a helicoid, or ¥ has genus zero, two limit ends, bounded curvature
and is translation-periodic.

A straightforward application of the Uniform Graph Lemma in [41] implies that the
set Dy of all properly embedded minimal surfaces M C R? with 0 € M, |Kp| <1 and
| K| (0) = 1, is compact when endowed with the topology of uniform C*-convergence on
compact subsets of R? for any k € N. It follows from the proof of Theorem 1.9 that D;
has a metric space structure that is induced from the Hausdorff distance on compact sets
of R3. Since this is the same induced distance function described in Theorem 1.9, D;
is a universal metric space in the sense that for any nonflat properly embedded minimal
surface M in R3, the compact metric space D1(M) embedds isometrically as a subspace of
D;. An interesting question asks whether or not there exists a properly embedded minimal
surface M of R? such that Dy = Dy(M).

In certain cases, we can prove that for a given properly embedded nonflat minimal
surface M C R3, there are no minimal surfaces of finite total curvature in D(M). In such
a case, Theorem 1.9 implies that there exists a dilation limit of M which has bounded
curvature and is dilation-periodic. We consider three such cases in the following theorem.
In Section 10, we prove this theorem and indicate possible applications to resolving several
outstanding problems in the classical theory of minimal surfaces.

Theorem 1.10 Suppose M C R? is a complete orientable nonflat embedded minimal
surface which satisfies one of the following three properties.

1. The Gauss map of M misses a subset A C S*(1) which contains two nonantipodal
points.



2. M has a nontrivial well-defined injective associate surface fo: M — R3 (this holds,
for example, when M admits an intrinsic isometry which does not extend to an
ambient isometry).

3. M is a properly embedded minimal surface of quadratic area growth and neither M
nor any element of D(M) has finite total curvature.

Then:

(i) There exists a properly embedded dilation-periodic minimal surface ¥ C R3 with infinite
genus and bounded curvature, with ¥ being a minimal element in D(X), which also
satisfies the same property 1, 2 or 8 as M.

(ii) If M is properly embedded in R3, then X can be chosen to be any minimal element of
D1(M). Otherwise, ¥ can be obtained as one of the local pictures of M on the scale
of curvature, via Theorem 1.5.

(iii) If M satisfies 3, then every minimal element ¥ € D(M) is dilation-periodic, and
every limit tangent cone at infinity of such a X is a cone over a finite collection of
geodesic arcs which join two antipodal points of Sz(l).

The authors would like to thank David Hoffman for helpful conversations and suggestions.

2 Examples of nontrivial minimal laminations.

2.1 Minimal laminations with isolated singularities.

We first construct examples in the the closed unit ball of R? centered the origin with the
origin as the unique nonremovable singularity. We then show how these examples lead to
related singular minimal laminations in the homogeneous spaces H? and H? x R.

ExaMPLE 1. Catenoid type laminations. Consider the sequence of horizontal circles C), =
Sz(l) N{zs = %}, n > 2. Note that each pair Cak, Cor11 bounds a compact unstable
catenoid M (k). Clearly M (k) N M(K') = O if k # k’. The sequence {M (k)}
converges with multiplicity two outside of the origin 0 to the closed horizontal disk
D of radius 1 centered at 0. Thus, {M(k)}; U {D — {0}} is a minimal lamination
of the closed ball minus the origin, which does not extend through the origin, see
Figure 1.

ExamPLE II. Colding-Minicozzi examples. In their paper [5], Colding and Minicozzi con-
struct a sequence of compact embedded minimal disks D;, C B(0, 1) with boundary
in S?(1), that converges to a singular minimal lamination £ of the closed ball B(0, 1)
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Figure 1: A catenoid type lamination.

Figure 2: A Colding-Minicozzi type lamination in a cylinder.

which has an isolated singularity at 0. The related lamination L of B(0,1) — {0}
consists of a unique limit leaf which is the punctured closed disk D — {0}, together
with two nonproper leaves that spiral into D — {0} from opposite sides, see Figure 2.

Consider the exhaustion of H? (naturally identified with B(0, 1)) by hyperbolic balls
of hyperbolic radius n centered at the origin, together with compact minimal disks
with boundaries on the boundaries of these balls, similar to the compact Colding-
Minicozzi disks. We conjecture that these examples produce a similar limit lamina-
tion of H® — {0} with three leaves, one which is totally geodesic and the other two
which are not proper and that spiral into the first one. We remark that one of the
main results of Colding-Minicozzi theory (Theorem 0.1 in [9]) insures that such an
example cannot be constructed in R3.

ExaMpPLE II1. Catenoid type example in H and in H? x R. As in example I, consider
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Figure 3: Left: Almost flat minimal disks joined by small bridges. Right: A similar
example with a nonflat limit leaf.

the circles C,, = S"(1) N {23 = 1}, where S*(1) is now viewed as the boundary at
infinity of H3. Then each pair of circles Coy, Copy1 is the asymptotic boundary of
a properly embedded annular minimal unstable surface M (k), which is a surface
of revolution called a catenoid. The sequence {M (k)}, converges with multiplicity
two outside of 0 to the horizontal totally geodesic subspace D at height zero. Thus,
{M(k)}x U{D — {0}} is a minimal lamination of H® — {0}, which does not extend
through the origin. A similar catenoidal construction can be done in H? x R, where
we consider H? in the disk model of the hyperbolic plane. Note that the Halfspace
Theorem [17] excludes this type of singular minimal lamination in R3.

2.2 Minimal laminations with limit leaves.

EXAMPLE IV. Simply-connected bridged examples. Consider the sequence of horizontal
closed disks D, = B(0,1) N {3 = 1} n > 2. Connect each pair Dy, D41 by a
minimal small almost vertical bridge (in opposite sides for consecutive disks, as in
Figure 3 left), and perturb slightly to obtain a complete embedded stable minimal
surface with boundary in B(0, 1) (this is possible by the bridge principle [39]). We
denote by M the intersection of this surface with B(0,1). Then the closure of M in
B(0,1) is a minimal lamination of B(0, 1) with two leaves, both being stable, one of
which is D (this is a limit leaf) and the other one is not flat and not proper.

A similar example with a nonflat limit leaf can be constructed by exchanging the
horizontal circles by suitable curves in S?(1). Consider a nonplanar smooth Jordan
curve I' C Sz(l) which admits a one-to-one projection onto a convex planar curve
in a plane II. Let T',, be a sequence of smooth Jordan curves in S?(1) converging
to I', so that each I'), also projects injectively onto a convex planar curve in II and
{I',},, U{T} is a lamination on S?(1). Each of the T, is the boundary of a unique

12



minimal surface M, which is a graph over its projection to II. Now join slight
perturbations of the M,, by thin bridges as in the preceeding paragraph, to obtain a
simply connected minimal surface in the closed unit ball. Let M be the intersection
of this surface with B(0, 1). Then, the closure of M in B(0, 1) is a minimal lamination
of B(ﬁ, 1) with two leaves, both being nonflat and stable, and exactly one of them is
properly embedded in B(0, 1) and is a limit leaf (see Figure 3 right).

EXAMPLE V. Simply-connected bridged exzamples in H® and H? x R. As in the previous
subsection, the minimal laminations in example IV give rise to minimal laminations
of H® and H? x R consisting of two stable complete simply connected minimal sur-
faces, one of which is proper and the other one which is not proper in the space, and
either one is not totally geodesic or both of them are not totally geodesic, depending
on the choice of the Euclidean model surface in Figure 3. In this case, the proper
leaf is the unique limit leaf of the minimal lamination. More generally, Theorem 13
in [32] states that the closure of any complete embedded minimal surface of finite
topology in H? or H? x R has the structure of a minimal lamination.

3 Stable minimal surfaces which are complete outside of a
point.

Definition 3.1 A surface M c R® — {6} is complete outside the origin, if every divergent
path in M of finite length has as limit point the origin.

In Sections 4 and 5 we study complete embedded minimal surfaces M C R? with
quadratic decay of curvature. Our approach is to produce from M, via a sequence of
homothetic shrinkings, a minimal lamination £ of R? — {0} with a planar limit leaf. Since
L is a leaf of a minimal lamination of R® — {0}, then L is complete outside 0. After passing
to its universal cover L, we can assume L is stable (see Lemma 3.4 below), orientable and
complete outside the origin. The following lemma will be then used to show that the
closure of L is a plane, which implies the same property for the closure of L. This planar
leaf L will be a key step in proving that M must have finite total curvature.

Remark 3.2 The line of arguments in the last paragraph is inspired by ideas in our pre-
vious paper [30], where we proved that a properly embedded minimal surface of finite genus
in R® cannot have one limit end. A key lemma in the proof of this result states that if
such a surface M exists, then some sequence of homothetic shrinkings of M converges to
a minimal lamination of R® — {0}. Furthermore, this lamination is contained in a closed
halfspace and contains a limit leaf L, which is different from the boundary of the halfspace.
Since L is a leaf of a minimal lamination of R® — {6}, then it is complete outside 0 and
as it is a limit leaf, it must be stable. It follows that the oriented double cover of L also
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satisfies the same properties. We then proved that the closure of L must be a plane. Using
the plane L as a guide for understanding the lamination, we obtained a contradiction.

Before stating the stability lemma, we will set some specific notation to be used
throughout the paper. Let R:R?® — R be the distance function to the origin 0 € R3.
Given r > 0, B(r) will stand for the open ball centered at 0 with radius . The boundary
and closure of B(r) will be respectively denoted by dB(r) = S?(r) and B(r). S'(r) will
represent the circle {(z1,z2) | 27 + 23 = 1} € R% For a surface M C R3, Kj; will denote
its curvature function. If 5 C M is a curve, then L(3, g) € (0, o] will stand for the length
of B with respect to a Riemannian metric g on M.

If M is a complete stable orientable minimal surface in R3, then M must be a plane.
The following lemma extends this result to the case where M is complete outside the
origin.

Lemma 3.3 (Stability Lemma) Let L C R® — {0} be a stable orientable minimal sur-
face which is complete outside the origin. Then, L U {0} is a plane.

Proof. Consider the metric g = #g on L, where g is the metric induced by the usual
inner product of R?. Note that if L were a plane through 0, then § would be the metric
on L of an infinite cylinder of radius 1 with ends at 0 and at infinity. We will show that
in general, this metric is complete on L and that the assumption of stability can be used
to show that (L, g) is flat.

Next we check that (L, g) is complete. Let 3 C L be a divergent path. First suppose
that 3 does not limit to 0. Then, the length L(/3, g) is infinite because (L, g) is complete
outside 0. Hence, we can parameterize 3 by its g-arc length ¢ in [0, 00). Since for t > 0,

18] < 18(0)| + [8(t) — BO)] < [B(0)[ + L(Blj0,9, 9) = 16(0)] + £,

_oedt e dt , B
LB.9) = [ 52 | e = s IBOI+ Jim loat +15(0)) = oo,

Now assume that 3 limits to 0. After removing a subarc of finite length we can pa-
rameterize 3 by its g-arc length in (0,1] with lim,_+ 8(t) = 0. For 0 < ¢ < t < 1,
1B(8)] < [B(t) = Be)| + B8(e)] < LBy, 9) + 18(e)] = t — e+ [B(e)]. Taking & N\, 0, we
have |3(t)| < t. Hence,

Ldt L dt
L ,NZ/—Z — = — lim logt = oo,
(8,9) N Jim log

and so, (L, g) is complete.
We now prove that (L, g) is flat. The laplacians and Gauss curvatures of g, g are related

by the equations A = R2A and K = R2(K1 + AlogR). Since AlogR = %m >0,

~A+ K =R)(-A+ K+ AlogR) > R*(—A+ Kp).
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Since K7, < 0 and (L, g) is stable, —A + K; > —A + 2K} > 0, and so, ~A+K>0on
(L,g). As g is complete, the universal covering of L is conformally C (Fischer-Colbrie and
Schoen [13]). Since (L, g) is stable, there exists a positive Jacobi function u on L. Passing
to the universal covering, Au = 2Ku < 0, and so, u is a positive superharmonic on C,
and hence constant. Thus, 0 = Au — 2Ku = —2Kru on L, which means K = 0. O

The following basic result is Lemma 18 in [32].

Lemma 3.4 (Stability of Leaves Lemma) Suppose L is a minimal lamination of a
Riemannian three-manifold N. Then the following statements hold:

1. If L is a limit leaf of L, then the universal cover L of L is a stable minimal surface.

2. If M is a leaf of L and L is a leaf of the sublamination L(M) C L of limit points of
M such that the holonomy representation of L on a side containing M has subexpo-
nential growth (amenable holonomy group) on compact subdomains of L, then L is
stable. (For example, if the holonomy representation has image group isomorphic to
a finitely generated abelian group.)

3. If M is a leaf of L and L is a leaf of the sublamination L(M) C L and there is an
open set O, containing L such that O, N L(M) = L, then L is stable.

4. If N has positive Ricci curvature, then £ has no limit leaves. If N has nonnegative
sectional curvature and L is a complete limit leaf of L, then L is simply-connected
or 1-connected, totally geodesic and stable.

5. If {My,},, is a sequence of embedded minimal surfaces in N that converge to L and
their convergence to a nonlimit leaf L of L is of multiplicity greater than one, then
L is stable.

The following two corollaries follow immediately from Lemmas 3.3 and 3.4.

Corollary 3.5 If L is a limit leaf of a minimal lamination of R? — {6}, then L is a plane.

Corollary 3.6 If L is a minimal lamination of R3 which is a limit of embedded minimal
surfaces M,, and L is a leaf of L whose multiplicity is greater than one as a limit of the
sequence { My }n, then L is a plane.

4 Minimal laminations with quadratic decay of curvature.

In this section we will obtain a preliminary description of any nonflat minimal lamination
L of R? — {0} with quadratic decay of curvature, see Definition 4.2 below. We will first
consider the simpler case where L consists of a properly embedded minimal surface in
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R3. When the decay constant is small, then the topology and geometry of the surface is
simple, as shown in the next lemma.

Lemma 4.1 There exists C € (0,1) such that if M C R® —B(1) is a properly embedded
connected minimal surface with nonempty boundary OM C S*(1) such that |Kp|R? < C
on M, then M is an annulus which has a planar or catenoidal end.

Proof. First let C' be any positive number less than 1 and we will check that M is
an annulus. Let f = R? on M. Its critical points occur at those p € M where M
is tangent to S?(|p|). The hessian V2f at such a critical point p is (VZf),(v,v) =
2 (Jv|> = op(v,v){p,N)), v € T,M, where o is the second fundamental form of M and
N its Gauss map. Taking |v| =1, we have o,(v,v) < |op(e;, ;)| = /| Knm|(p) where eg, ea
is an orthonormal basis of principal directions at p. Since (p, N) < |p|, we have

(V2 )plv,0) 2 2 [1 = ([KmR)?] > 2(1 = VO) > 0. M

Hence, all critical points of f in the interior of M are nondegenerate local minima on M.
Since M is connected, f has no local minima except along OM where it obtains its global
minimum value. By Morse theory, M intersects every sphere S?(r), r > 1, transversely in
a connected simple closed curve, which proves that M is an annulus.

If M has finite total curvature, then it must be an end of a plane or of a catenoid,
thus either the lemma is proved or M has infinite total curvature. Note that since M
is a properly embedded minimal annulus in R® with compact boundary, then Collin’s
Theorem [10] implies that M has finite total curvature, thereby finishing the proof of a
stronger result (we can exchange ”there exists C' € (0,1)” in the statement of the lemma
by "for all C' € (0,1)”). We will give an alternative proof, which does not use Collin’s
theorem, and that works for a constant C' € (0, 1) sufficiently small.

A general technique which we will use to obtain compactness of sequences of minimal
surfaces is the following (see e.g. [36]): If {M,, },, is a sequence of minimal surfaces properly
embedded in an open set B C R3, with their curvature functions K, uniformly bounded,
then a subsequence converges uniformly on compact subsets of B to a minimal lamination
of B with leaves that have the same bound on the curvature as the surfaces M,,.

Suppose that the lemma fails. In this case, there exists a sequence of positive numbers
C,, — 0 and minimal annuli M,, satisfying the conditions of the lemma, such that M,, has
infinite total curvature and Ky, |R? < C,. Since the M,, are annuli with infinite total
curvature, the Gauss-Bonnet formula implies that there exists a sequence of numbers
R, — oo such that the total geodesic curvature of the outer boundary of M, NB(R,) is
greater than n. After extracting a subsequence, the M, = RLnMn converge to a minimal
lamination £ of R3 by parallel planes (since the curvature of the leaves is zero) and the
convergence is smooth outside 0. Furthermore, £ contains a plane II passing through 0.
Consider the great circle I' = ITNS?(1) and let T'(¢) be the e-neighborhood of T' in S%(1),
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for a small number € > 0. Each M, transversely intersects S?(1) in a simple closed curve o
and the Gauss map of M, along « is almost constant and parallel to the unit normal vector
to II. Clearly, for n sufficiently large, either M, NT'(¢) contains long spiraling curves that
join points in the two components of OT'(¢) or it consists of a single closed curve which is
C?-close to I'. This last case contradicts the assumption that the total geodesic curvature
of M, NS?(R,,) is unbounded. Hence, we must have spiraling curves in M, NT'(¢). In this
case, there are planes IT,,TI_ in £, parallel to II, such that 0T'(¢) = (I, UTI_) N S*(1).
In a small neighborhood U of (II; UII_) N B(2) which is disjoint from II, the surfaces
M, NU converge smoothly to £ N U. Since (ITy UTI_) N'B(2) is simply connected, then
a standard monodromy lifting argument implies M,, NB(1) contains two compact disks in
U which are close to (II; UTT_) NB(1). This contradicts the fact that each M,, intersects
S?(1) transversely in just one simple closed curve (see the first paragraph of this proof).
This contradiction completes the proof of the lemma. O

Definition 4.2 The curvature function of a lamination £ will be denoted by K.: L — R.
L is said to have quadratic decay of curvature if |K;|R?> < C on L for a number C > 0.

Our main result in this section will be the following proposition, which will be improved
in Corollary 6.3.

Proposition 4.3 Let £ be a nonflat minimal lamination of R? —{6} with quadratic decay
of curvature. Then, any leaf of L is a properly embedded minimal surface in R3 — {0},
and L does not contain flat leaves.

Proof. The key step in the proof of this proposition is to show that any nonflat leaf of L is
properly embedded in R — {6} The proof of this result occupies several pages. Arguing
by contradiction, suppose L € £ is a nonflat leaf which is not proper in R? — {6}

We claim that £ contains a plane passing through 0. As L is not proper in R® — {0},
there exists p € lim(L) = {limit points of L} ¢ R® — {0}. Let L' € £ be the leaf that
contains p. Since L' Nlim(L) is closed and open in L, then L’ is a limit leaf of L contained
in the closure of L. In particular, by Corollary 3.5, L’ is either a plane or a plane punctured
at the origin, and L is contained in one of the halfspaces determined by L’. If L’ does not
pass through 0, then L’ has an e-neighborhood L’ (e) at positive distance from 0. Since
|K1|R? < C for certain C' > 0, then LN L'(¢) has bounded curvature, which is impossible
by the statement and proof of Lemma 1.3 in [36]; for the sake of completeness we now
sketch the argument. Taking e small, each component Q of L N L'(¢) is a multigraph.
Actually Q is a graph over its projection on L’ by a separation argument. Thus, L is
proper in L'(g), and the proof of the Halfspace Theorem [17] gives a contradiction. Hence,
the plane L' passes through 0.
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Figure 4: A curve I' € A of type I (left) and of type II (right).

Let HT C R? be the open halfspace of R® — L’ that contains L. After a rotation, we
will assume Ht = {x3 > 0}. Since L is a leaf of the lamination £, L is complete outside
0. AsO e I/ and L' C lim(L), then 0 € T as well.

We now check that L is proper in H* and L’ = lim(L). Assume L is not proper in H*.
Then there exists a limit leaf L of £ contained in HT N L. By the above arguments, Lisa
plane. Since L is connected, L is proper in the open slab bounded by L’ and L (otherwise
there exists a plane in this slab which is disjoint from L and with points of L at both
sides). Since L is a plane in H™, it is at positive distance from 0 with L limiting to it,
and so, we can apply the previous arguments to obtain a contradiction. Since L' C lim(L)
and L is proper in H*, it follows L' = lim(L).

Given § > 0, let Cs = {(w1, 2, x3) | 23 = §%(2? + 23)} N HT (positive halfcone) and
Cj the region of HT below Cjs. A consequence of |[K1|R* < C is that for all € > 0, there
exists 0 > 0 such that for all p € L N Cy, then the angle that the tangent space to L at p
makes with the horizontal is less than €. We fix € > 0 small. Hence, each component of
LN Cy is locally a graph of slope at most € over L’. Let A be the set of components of
LN (SY(1) x (0,6]) which are not just points or compact arcs with boundary end points
on S*(1) x {§}. Then any I' € A is of one of the following types, see Figure 4:

TyPE I. T is a closed almost horizontal curve. In this case, any other IV € A is also of
type I, and there are an infinite number of these curves, converging to S'(1) x {0}.

Type II. T is a spiraling curve limiting down to S'(1) x {0} C L’. T rotates infinitely
many times around the cylinder S*(1) x (0, §], becoming arbitrarily densely packed

as 3 — 0. Any other I" € A is of type II, and L N (Sl(r) X (0,7"5]) has the same
pattern as A, for each r > 0.

Suppose the curves in A are of type I and we will obtain a contradiction.
Let I" € A. Denote by Gr the component of L N Cy (1) with boundary I', where Cj (1) =
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Figure 5: The portion Gp(II) of the graph Gr below the plane II.

Cy N{(z1,2z2,23) | 23 + 23 > 1}. Since Gr is properly embedded in Cj (1) and I' C Gp
generates the first homology group of Cj (1), then Gr separates Cy (1). Since the unit
normals to Gr lie in a hemisphere of S*(1) and Gr separates C; (1), then the orthogonal
projection of G to the plane L’ is injective. In particular, G is a graph over a domain
in L' and OGr is I together with OGr N Cs.

Our goal now is to show that for I' close enough to S'(1) x {0}, the boundary of the
graph G equals T'. Take I" € A close to S'(1) x {0} and suppose dGrNCs # @. Let II be
the horizontal plane at the minimum height of 0GrNCs, which we may assume, by taking
I' € A sufficiently close to S'(1) x {0}, to be at a height above max z3|p. Then Gr(II) =
GrNa3((0,z3(10)]) is a connected minimal graph, see Figure 5. Since Gr(TI) is a graph, it
is proper in 23! ([0, z3(IT)]), and thus, Gp(IT) is a parabolic surface with boundary ([11]).
The height function h = z3|q,. (1) is harmonic and bounded on Gr(II), with boundary
values z3|r and z3(II) > 0. We define Flux(Gr(II),T") = [ g_Z’ where 7 is the outer unit
conormal along OGr(Il), and also define Flux(Gr(Il), Gr(lI) N1II) =[5 ) [VA| (note
that this last integral exists when considered to be a value in (0, c0]). Applying to h a
slight modification of the proof of the Algebraic Flux formula for parabolic manifolds in
[22], we obtain

Flux(Gr(11),T") = —Flux(Gr (1), Gp(IT) N 1II). (2)

Taking I' € A sufficiently close to S'(1) x {0}, the left-hand-side of (2) can be made
arbitrarily small. At a point py € OGp(II) N Cs, n forms an angle at least § with the
horizontal. By curvature estimates, 7 forms an angle at least g with the horizontal in
a fixed size neighborhood of py in Gp(II) N II, which creates a certain amount of flux
pointing upward. Thus, the right-hand-side of (2) is greater than a certain positive number.
Since for IV € A below T' the corresponding plane IT' has z3(Il') > x3(II), we create a

larger amount of flux pointing upward, thereby, obtaining a contradiction with (2). This
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contradiction shows that for I' € A sufficiently close to S'(1) x {0}, dGr N Cs = @ and so,
Gr is a graph over the entire annulus {z% + 22 > 1} x {0}.

We claim that there exist €1 > 0 and a sequence of points {g,}, C L converging to 0
such that (|Kr|R?)(g,) > e1: if not, there exists » > 0 small such that |[K;|R? < 1 in
LNB(r). By the arguments in the proof of Lemma 4.1, f = R? is a Morse function with
only local minima in L NB(r), and so, L NB(r) consists of a nonempty family of compact
disks and noncompact annuli with boundary on S?(r) and which are proper in B(r) — {0}.
Let ©Q be one of these components and suppose () is an annulus. If Q is conformally D*,
then Q extends smoothly across 0, which contradicts the maximum principle since L is
contained in {x3 > 0}. If Q is conformally {¢ < |z| < 1} for some € > 0, then each
coordinate function of 2 can be reflected in {|z| = €} by Schwarz’s reflection principle,
defining a branched conformal harmonic map on a larger annulus that maps the entire
curve {|z| = ¢} to a single point, which is impossible. This means that every component
in LNB(r) is a compact disk. By the previous arguments, there is a sequence of boundary
curves 7y, of these disks that converges to S'(r) x {0}, and such that for n large, 7, is the
boundary of an exterior noncompact minimal graph over its projection to L’. This clearly
contradicts that L is connected and proves the claim.

Since |K|R? < C on |ql—n|(L U L'), a subsequence of these homothetically expanded

surfaces converges to a minimal lamination £; of 3 ([0, 00)) — {0} that contains L. By
the last claim, £; also contains a nonflat leaf L; passing through a point in S?(1). As
above, L; is complete outside 0, limits to 0, is proper in H*, L' = lim(L;) and the
intersection A of Ly with S*(1) x (0, 6] consists of curves of type I or II (we again exclude

those components of L; N (Sl(l) X (0,5]) which are just points or compact arcs with

boundary at S'(1) x {6}). If the curves in A; are of type II, then the corresponding spirals
produce after shrinking back to L spiraling curves of type IT on A, which is contrary to
the hypothesis. Thus, A consists of curves of type I.

By our previous description of the type I curves, the closed curve components in Aq
close to S1(1)x {0} are closed almost horizontal curves that are naturally ordered by heights
and have S'(1) x {0} as limit set. Furthermore, each T'; € A; close enough to S'(1) x {0}
bounds an annular end Gr, on L; which is a graph over the exterior of S*(1) x {0} in L'.
We claim that there exists a compact horizontal disk Ay with Ay N Ly # @ consisting of a
finite number of simple closed curves in Ay —9Aq, and that Ay can be extended to a global
graph G(A1) over the (z1, z2)-plane L', with G(A1)NL; = AjNL;. To see this, note that
if there exists a curve I'1 € A; such that its corresponding graphical annular end Gr, of
L, is planar, then any curve I'} € A; below I'; also bounds a planar graphical annular end
szl of Ly. In this case, since between consecutive planar ends of L; we can always find
a horizontal plane II; that intersects L; transversally in a compact set, our claim holds
by taking an appropriate disk A; in IIy and by letting G(A1) = II3. Suppose now that
a curve Iy € A; bounds a catenoidal end Gr, (with positive logarithmic growth because
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Figure 6: The shaded area is the compact horizontal disk Ay, in the case that the end
Gr, is catenoidal.

Ly € HY). Let '} be the almost-circle intersection of Gp, with a transverse horizontal
plane P and we consider the horizontal disk A; C P bounded by T '. Now define Ay C P
to be a slightly smaller closed disk in P which is contained in the interior of A; and such
that W =A1NL; = (31 N Ly) — I'} is contained in the interior of A; (we can assume
W # @ by taking I'; close enough to S'(1) x {0}). In this case, G(A1) can be taken to
be the union of A; with an annular graph that lies above Gr, and close to it. We note
that the set of curves W bounds a proper, possibly disconnected subdomain Lq(W) of Ly
which lies above P, see Figure 6.

Once we have defined the disk Ay, we will just consider the case where the annular
graphical ends Gr, C L; for I'y € A; are catenoidal (the planar end case is similar). For
n large, the disks D,, = |g,|A1 intersect L transversally in a finite set of closed curves
W,, which bounds a proper, possibly disconnected subdomain L(W,,) of L. Furthermore,
L(W,,) lies above the horizontal plane that contains D,,. By construction, L(W),,) is the
portion of L above a topological plane P, such that the end of P, has a representative
that coincides with one of the annular graphical ends Gp(p,) for a certain I'(P,) € A.
Note that Gr(p,) lies above Gr(p,,,,) for any n large and any m € N. This implies
L(W,) C L(Wy4m) for such n,m. Since x3 is proper on L(W,1,,), the absolute value
of the flux of Vg across OL(Wy4p,) is not less than the absolute value of flux of Vg
across OL(W,,), which is positive. This is a contradiction, since the length of OL(W4,)
converges to 0 as m — o00.

Now suppose that the curves in A are of type II, and we will also obtain a
contradiction. Take a component I' in A. By embeddedness, all of the curves in A —{I'}
have disjoint arcs trapped between one complete turn of I'. Since L is proper in H', we
have the number of curves in A is finite.
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Figure 7: The multigraph G; bounded by I'(7), f(z)

Suppose A = {I'(1),...,T'(k)}. Then the portion of L between the cone Cs and the
cylinder S*(1) x (0, 6] and below the plane {z3 = 6} contains k multigraphs G1, ..., Gj.
Without loss of generality, we may assume that the boundary of each multigraph G;
consists of the curve I'(i) together with a corresponding curve I'(i) on the cone Cs. Using
natural polar coordinates (r,6) with r € (0,1] and € € [0, 00), we can parametrize these
multigraphs as graphs G; = G;(r, ) over their projection onto the domain (0, 1] x [3;, ),
for a certain 8; € [0,27) where [['(4)](5;) is the end point of I'(i) (and also of T'()) at
height ¢, see Figure 4.

Assume that each I'(7) is right-handed so it is parameterized by G;(1, 0) for 6 € [3;, ).
Given t € [0,00), let T'(i,t) to be the arc G;({1} x [2m,27 + t]) on T'(i). Let F;(t) =
fr(w) %ﬂnds be the flux of z3 along I'(7,t) with the unit conormal 7 that points into the
solid cylinder {z? + 22 < 1}. Consider the set of numbers F = {F(t) = S.F_ | Fi(t) | t €
[0,00)}. Since the multigraph Gr(;y coming out from any I'(i) € A is an co-valued positive
multigraph over the annulus {1 < z2+23} C L', the proof of Theorem 0.6 in [4] implies that
the set F cannot be bounded (also see the discussion after the statement of Corollary 0.7
in [4]). We now check that F is in fact a bounded set.

We will prove that F is bounded as a consequence of the Divergence Theorem, applied
to the field Vxg on certain compact minimal surfaces contained in L, similar to the appli-
cation of Lemma 4.1 in [4]. Since the lengths of the radial segments along G; is bounded
(as a function of ), the Divergence Theorem applied to V3 gives that the boundedness of
F is equivalent to the one of the similarly defined set F of fluxes obtained by exchanging
the curves T'(i,t) by T'(i,t).

Assume for the moment that the foliation by horizontal circles of the cone Cj has
the property that each circle intersects each I'(i) exactly once. For given t € [27, 00),
consider the horizontal slab S(t) above the minimum height h(t) of the points G;(1, 2w +t)
(1 <i < k) and below 8. Hence, h(t) tends to zero and S(t) goes to 3" ((0,6]) as t — oo.
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Let ©(t) be the compact subdomain intersection of L with the region above Cj inside S(t).
By the Divergence Theorem, the flux F(t) is bounded independently of ¢ provided that
the flux F/(t) of Vg across 9Q(t) N {x3 = h(t)} is bounded independently of ¢. Arguing by
contradiction, suppose {F(¢) | t € [0,00)} is not bounded. Then there exists a sequence
tn — 00 such that F(t,) — oo as n — oo. Note that h(t,) — 0 and consider the surfaces
it )(L U L'). After passing to a subsequence, these expanded surfaces converge to a

minimal lamination £, that contains L’ as a leaf. Note that £ also contains a leaf Lo,
with a vertical tangent space above the cone Cy (this holds because at every height, we
can join some pair of consecutive spiraling curves by a compact arc inside the horizontal
disk enclosed by Cs). Since such a leaf cannot be flat, our previous arguments imply that
Lo consists of L' together with a finite number of nonflat leaves with type II curves. In
particular, the convergence of ﬁ(L U L) to such nonflat leaves is smooth outside 0 and
has multiplicity 1. This implies that the flux Fi, of V3 along the intersection of the disk
{(x1,m2,1) | 22+ 23 < 5%} with the union of these nonflat leaves, is finite. Since the fluxes
ﬁﬁ (tn) converges to Fu,, we obtain a contradiction.

Suppose now that the foliation by horizontal circles of the cone Cjy fails to have the
property that each circle intersects each r (7) exactly once. Then we exchange the foliation
of Cs by horizontal circles by a foliation of the same cone by smooth simple closed curves
with the following two properties:

e Any curve o in this foliation intersects transversely at a single point each of the
generating halflines of Cs with uniformly bounded angle.

e Any such a o also intersects each r (7) transversely at exactly one point.

Note that each of these curves ¢ bounds a unique embedded minimal disk D, in the
convex region above Cs with 9D, = o (by Rado’s theorem), and these disks are radial
graphs which form a foliation of the convex solid cone. By the Divergence Theorem and
our previous arguments, one just needs to check that the flux of (Vz3)|r along D, is
uniformly bounded for all disks D, below a certain positive height. The proof of this fact
is almost identical to the case where the foliation of Cs was by circles. Hence, we have
found a contradiction which proves that any nonflat leaf L € L is properly embedded in
—{0}. N

Finally, we show that none of the leaves of £ are flat. Suppose L € L is a
flat leaf, and let L € £ be a nonflat leaf. If L does not limit to 0, then L has bounded
curvature, and so, it is properly embedded in R3. By the Halfspace Theorem, we then
obtaln a contradiction. Hence, 0 is a limit point of L. Now consider the sublamination
= {L,L}. If L has 0 in its closure, then we obtain a contradiction from our - previous
arguments. So we may assume that L is a plane which does not pass through 0. By the
proof of the Halfspace Theorem, the distance between L and L is positive. Consider the
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plane II parallel to L at distance 0 from L. Since L is not a plane, IT must go through the
origin, and we finish as before. O

5 The local removable singularity theorem.

In this section we prove Theorem 1.4. For the proof of the consequence item 8 of Theo-
rem 1.4, see the proof of Corollary 5.3 at the end of this section.

Theorem 5.1 Let B(p, R1) be a compact Riemannian ball of radius Ry centered at a point
p. Suppose L C B(p, R1) — {p} is a minimal lamination such that there exists C > 0 with
|K.|R?2 < C. Then, L extends to a minimal lamination of B(p, R1). In particular,

1. The curvature of L is bounded in a neighborhood of p.

2. If L consists of a single leaf M C B(p, Ry) — {p} which is a properly embedded
minimal surface with @ # OM C OB(R1), then M extends smoothly through p.

Proof. We will first prove the theorem in the R? setting where p = 0 and B(p, R;) =
B(Ry) = {x € R? | ||z|| < 1}. We first consider the special case where £ consists of a
single leaf M which is properly embedded in B(R;) — {0}. In this case it is known that
the area of M is finite and M satisfies the monotonicity formula, see for instance [16]. For
the sake of completeness, we give a self-contained proof in our setting.

For 0 < r < R < Ry, let Ap(R) = Area(M NB(R)), lyr(R) = Length(M NS?*(R)) €
(0,00] and Ap(r, R) = Area(M N [B(R) — B(r)]) € (0,00). The Divergence Theorem
applied to the vector field p” = p — (p, N)N gives

2Ap(r, R) = /

MN[B(R)—B(r)]

Div(p') = /8T<p, v) + /8R<p, V),

where 0, = M N S%*(r), Or = M NS*(R) and v is the unit exterior conormal vector to
M N [B(R) — B(r)] along its boundary. The first integral is not positive, and Schwarz
inequality applied to the second one gives 2A,,(r, R) < Rl (R). Taking r — 0, we have

2431(R) < Rly(R). (3)

In particular, the area of M is finite. Next we observe that the monotonicity formula holds
in our setting (i.e. R=2A/(R) is not decreasing). To see this, note that

33% (Aﬂgf)> = R Ay (R) — 2A(R). (4)
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The coarea formula applied to the function R gives

AR = [

o VA > Iyu(R) (5)

where VR is the intrinsic gradient of R and ds the length element along dr. Now (4), (5),
(3) imply the monotonicity formula.

As an important consequence of the finiteness of its area, M has limit tangent cones
at the origin under expansions. To prove that M extends to a smooth minimal surface
in B(R;), we discuss two situations separately. In the first one we will deduce that M
has finite topology, in which case the removability theorem is known (see [1], although we
will also provide a proof of the removability of the singularity in this situation), and to
conclude the proof in this first case where £ consists of a single leaf M which is properly
embedded in B(R;) — {0}, we will show that the second case cannot hold.

1. Suppose there exist C; < 1 and Ry < R such that |Ky|R? < C; in M NB(Ry).
Using the arguments in the proof of Lemma 4.1, we deduce that M N B(R3) consists of
a finite number of annuli with compact boundary. Let A be one of these annuli. If A
is conformally {¢ < |z| < 1} for some £ > 0, then each coordinate function of A can
be reflected in {|z| = e} (Schwarz’s reflection principle), defining a conformal branched
harmonic map that maps the entire curve {|z| = £} to a single point, which is impossible.
Thus, A is conformally D* = D — {6}, and so, its coordinate functions extend smoothly
across 0, defining a possibly branched minimal surface A, that passes through 0. If 0 is a
branch point of Ag, then A cannot be embedded in a punctured neighborhood of 0, which
is a contradiction. Hence, Ag is a smooth embedded minimal surface passing through
0. Since M is embedded, the usual maximum principle for minimal surfaces implies that
there exists only one such an annulus Ag, and the theorem holds in this case.

2. Now assume that there exists a sequence {p,}, C M converging to 0 such that
1 < |Ky|R?*(p,) for all n, and we will obtain a contradiction. The expanded surfaces

M, = ﬁM c R? — {0} also have |K 5 |R? < C. After choosing a subsequence, the M,

converge to a minimal lamination £; of R3 — {0} with |K,,|R? < C. Furthermore, £
contains a nonflat leaf L passing through a point in Sz(l), where it has Gaussian curvature
—1 . By Proposition 4.3, L is a properly embedded minimal surface in R3 — {6} Finally,
we obtain the desired contradiction. By the monotonicity formula, R~2A,;(R) is bounded
as R — 0. Geometric measure theory implies that any sequence of expansions of M
converges (up to a subsequence) to a minimal cone over a configuration of geodesic arcs in
S?(1). Since any smooth point of such a minimal cone is flat, we contradict the existence
of the nonflat minimal leaf L.

In the R? setting, it remains to prove the theorem in the case £ is a minimal lamina-
tion such that £ does not intersect any small punctured neighborhood of 0 in a properly
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embedded surface. Thus, under our hypotheses, every punctured neighborhood of 0 inter-
sects a limit leaf of L. Since the set of limit leaves of L is closed, it follows that £ contains
a limit leaf F with 0 in the closure of F.

We claim that any blow-up of £ from 0 converges outside 0 to a flat lamination of R?
by planes. Since |K,|R? is scaling invariant, our claim follows by proving that for any
€ > 0, there is r(g) € (0,1) such that |[K.|R? < € on £NB(r(¢)). Arguing by contradic-
tion, suppose there exists a sequence of points ¢, € £ converging to 0 with (|Kz|R2)(gn)

bounded away from zero. Then, after expansion by ﬁ and taking a subsequence, we

obtain a nonflat minimal lamination £; of R® — {0} which satisfies the hypotheses in
Proposition 4.3. In particular, £ does not contain flat leaves. The limit leaf F' in £ pro-
duces under expansion a leaf F; (whose universal cover is stable) in £1, which is complete
outside the origin, and by Lemma 3.3, F} is a plane, which contradicts Proposition 4.3.
Now our claim is proved.

By the above claim, we know that any blow-up limit of £ is a minimal lamination of
R3 — {0} by parallel planes. It follows that for ¢ > 0 sufficiently small, in the annular
domain A = {z € R® | £ < |2| < 2} the normal vectors to the leaves of £. = 1LnA
are almost parallel. Hence, for such a sufficiently small ¢, each component C' of L. that
intersects S?(1) is one of the following types:

1. A compact disk with boundary in S$?(2);

2. A compact planar domain with one boundary curve in S?(2) and at least two other
boundary curves in Sz(%) and where the outer boundary curve bounds a compact
disk in %E;

3. A compact annulus with one boundary curve in Sz(%) and the other boundary curve
in S%(2);

4. An infinite multigraph whose limit set consists of two compact annular components
described in 3.

It follows that if for some sufficiently small g, £, has a component of type 4, then this
multigraph component persists for positive € < ¢, varying in a continuous manner in terms
of e. Thus, the existence of a multigraph component in L., implies that LNB(ep) has two
properly embedded two annular leaves in B(gg) — {0}. By our previously considered case,
these two annular leaves extend smoothly to two minimal disks that intersect at the origin,
thereby, contradicting the maximun principle for minimal surfaces. This contradiction
shows that only components of types 1, 2, 3 can occur in L.,. But in each of these
cases, the outer boundary curve of a component C' of L., bounds a disk or a properly
embedded annulus that extends to a minimal disk (there can only be one such annulus by
the maximum principle). Rado’s theorem implies that these surfaces are graphs and so, by
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curvature estimates, have bounded curvature in a neighborhood of the origin. Hence, the
closure of £ in B(R;) — {0} is a minimal lamination of B(R;), which proves the theorem
in the case R? setting.

Assume now that B(p, R1) is not necessarily equipped with a flat metric. We now
explain how to modify the arguments applied in the R? setting to the three-manifold
setting. First consider the case, where for some small Ry the exponential map on the
Ry-ball in T,(B(p, R1)) is a diffeomorphism yielding R* coordinates on B(p, Rg) centered
at p= 0. Suppose that for some Ry, 0 < Ry < Ry , LN B(p, R2) is noncompact properly
embedded minimal surface M in B(p, R2) — {p}. It follows from the monotonicity formula
of area for a minimal surface that M has finite area, and hence, under homothetic rescaling
of coordinates has minimal limit tangent cones at 0.

If there exists an ¢ > 0 and a sequence {p,}, C M converging to p such that

e < |Kuy|R?(p,) for all n, then a subsequence of the expanded surfaces M, = ﬁM

in ﬁ@(p, R1) converge to a nonflat minimal lamination L., of R®. Since L, is not flat
at some point of S?(1), it has a leaf which is not a cone, which is a contradiction to the
conclusion of the previous paragraph. Hence, any sequence of homothetic blow-ups of
M has a subsequence which converges smoothly to a plane passing through the origin in
R3. In particular, M has a finite number of annular ends, each of which has linear area
growth with respect to the complete metric #(, ). Hence, the ends of M are punctured
disks. Standard regularity theory implies the harmonic map of M into B(p, R2) extends
smoothly across the punctured disks. In particular, as in the R? setting, we see that for
R sufficiently small £ N (B(p, R2) — {p}) is a punctured disk that extends smoothly to a
minimal lamination of B(p, R2).

Assume now for all R0 < Ry < Ry, that £ N (B(p, R2) — {p}) is not a properly
embedded minimal surface in B(p, Re) — {p}. In particular, £ contains a limit leaf L with
p € L. The proof of this case is essentially identical to the proof given in the R? setting.
This completes the proof of Theorem 5.1. O

Remark 5.2 Applying the same techniques as those used in the proof of Theorem 5.1,
it is not difficult to prove a removable singularity result for a minimal lamination of
quadratic curvature decay, which is a minimal lamination of a neighborhood of infinity.
This result states that, after a rotation, outside of some large ball, the leaves of £ are
graphs asymptotic to ends of horizontal planes or to ends of vertical catenoids or almost
horizontal multigraphs over annular domains in the (z1, z2)-plane.

Corollary 5.3 Let M be a stable embedded minimal surface in a Riemannian three-
manifold N, which is complete outside a countable closed set of N. Then, the closure
of M has the structure of a minimal lamination of N, and the intrinsic metric completion
of M is a leaf of this lamination. In particular, if N is R3, then the closure of M is a
plane.
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Proof. Let S C N be the closed countable set such that M is complete outside S. Note
that the closure of M in N — S is a minimal lamination of N —S. By Theorem 1.4 and the
curvature estimates for stable minimal surfaces (see Ros [42] and Schoen [44]), M extends
smoothly through the subset of isolated points in S. Thus, we can assume S has no isolated
points. Since S is a closed and countable subset of the complete metric space N, then
S is a complete countable metric space in the induced metric. But a complete countable
metric space always has an isolated point (simple application of Baire’s Theorem, since
otherwise the substraction of the first n points of a listing of the space would be a countable
dense subset S, but the intersection N, S, is empty), and so, S has isolated points. This
contradiction proves the corollary. O

In any flat three-torus T3, there exists a sequence {M,, }, of embedded minimal surfaces
of genus three, with area diverging to infinity [24]. A subsequence of these surfaces con-
verges to a minimal foliation of T and the convergence is smooth away from two points.
Since by the Gauss-Bonnet formula, these surfaces have absolute total curvature 87, this
example demonstrates a special case of the following result.

Corollary 5.4 Suppose {M,}, is a sequence of complete embedded minimal surfaces in a
Riemannian three-manifold N, such that there exists a open covering of N and meMn |A,|?
is uniformly bounded for any open set B in this covering (here A, denotes the second
fundamental form of M, ). Then, there exists a subsequence of { My}, that converges to a
CH-minimal lamination £ of N, and the singular set of convergence S(L) is closed and
discrete. If L is a limit leaf of L or a leaf with infinite multiplicity as a limit, then this
leaf it totally geodesic. If each M, is connected and N is compact, then L is compact and
connected in the subspace topology (not necessarily path-connected,).

Proof. Let q be a point in N. We will say that ¢ is a bad point for the sequence { M, },, if
there exists a subsequence {M,, };, C {My}, such that the total curvature of every M,
in By(q, 1) is at least 27. First note that we can replace the covering in the statement
by a countable open covering of N by balls B;, i € N. Assume for the moment that B
contains a bad point ¢; for {M,},. We claim that B; has a finite number of bad points
after replacing {M,}, by a subsequence. To see this, since ¢ is a bad point for {M,},,
there exists a subsequence {M] = M,, }» C {M,}, such that the total curvature of every
Mj in By (q1, %) is at least 27. Suppose that g2 € B is a bad point for {M} };. Then we
find a subsequence { M} = My, }; C {Mj }x such that the total curvature of every M in
By (g, %) is at least 27. In particular, for j large, there are disjoint neighborhoods of ¢;
and ¢o in Bq, each with total curvature of M J’»’ at least 27. By our hypothesis, this process
of finding bad points and subsequences in B; stops after a finite number of steps, which
proves our claim. A standard diagonal argument then shows that after replacing the M,
by a subsequence, the set of bad points A C N for {M,},, is a discrete closed set in N.
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Suppose that ¢ € N — A. We claim that { M, },, has bounded curvature in a neighbor-
hood of ¢q. Arguing by contradiction, suppose there exist points p, € M,, converging to g
and such that |Kyy,|(p,) — oo as n — co. Let g4 = 2dn(q, A) > 0. By the local picture
theorem on the scale of curvature (Theorem 1.5 in the Introduction, which will be proved
in Section 8), we may assume for n large that

/ |Ap | > 2,
BN(Qv"‘n)mMn

where 7, \, 0 satisfies dn(q, pn) < 1 < %‘1 This clearly contradicts that ¢ € N — A, and
so, our claim holds. Therefore, there exist a neighborhood U, and a minimal lamination
L, of U, such that a subsequence of the M,, converges to L, in U,.

Another standard diagonal argument proves that after extracting a subsequence, the
M, converge to a minimal lamination £ of N — A. Note that the curvature function K,
of L does not grow faster than quadratically at any point of A (in terms of the inverse of
the distance function to that point): otherwise, there exists a sequence of blow-up points
pn € L converging to a point ¢ € A with |Kp, |(pn)dn(pn,q) unbounded, where L, is
the leaf of £ passing through p,. Using again the local picture theorem on the scale of
curvature, we deduce that there exist disjoint small neighborhoods V' (p,,) of p, in L,
such that the total curvature of L,, in V(p,,) is at least 27. Since M,, converges to L, this
contradicts our hypothesis. Once we know that K, does not grow faster than quadratically
at any point of A, our local removable singularity theorem (Theorem 1.4) implies £ extends
to a C1*-minimal lamination of N. The proofs of the remaining statements in the corollary
are straightforward. O

Remark 5.5 Theorem 1.4 supports the conjecture that a properly embedded minimal
surface in a punctured ball extends smoothly through the puncture. This is one of the
fundamental open problems in minimal surface theory, and a special case of our fundamen-
tal removable singularity conjecture stated in the Introduction. A partial result for this
conjecture was obtained by Gulliver and Lawson [15], who proved it in the special case the
surface is stable. Note that by curvature estimates for stable orientable minimal surfaces,
an embedded stable minimal surface M in a punctured ball in a Riemannian manifold
which is complete away from the puncture (in the sense that every divergent path with
finite length limits to the puncture or to the boundary of the ball), satisfies the curvature
estimate in Theorem 5.1, and so, its closure in the open ball is a minimal lamination of the
open ball. In general, the closure such a stable minimal surface can contain other leaves,
as seen in example IV of Section 2, where we constructed an embedded stable disk in
B(1) — {0} which is complete, has its boundary in dB(1), and whose closure is a minimal
lamination of B(1) with two nonflat leaves.
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6 The characterization of minimal surfaces with quadratic
decay of curvature.

In this section we will prove Theorem 1.6 stated in the Introduction.

Proposition 6.1 Let £ be a nonflat minimal lamination of R3 —{6} with quadratic decay
of curvature. Then, L consists of a single leaf, which extends to a connected properly
embedded minimal surface in R3.

Proof. By Proposition 4.3, each leaf L of £ is a minimal surface which is properly embedded
in R® — {6} Applying Theorem 5.1 to each L € L, we deduce that L extends to a properly
embedded minimal surface in R3. Finally, £ consists of a single leaf by the maximum
principle and the Strong Halfspace Theorem [17]. O

Theorem 6.2 Let M C R? be a complete embedded nonflat minimal surface with compact
boundary (possibly empty). If M has quadratic decay of curvature, then M is properly
embedded in R? with finite total curvature.

Proof. We first check that M is proper when OM is empty. In this case, the closure £ of M
in R*—{0} is a minimal lamination of R® — {0} satisfying the conditions in Proposition 6.1.
It follows that M is a properly embedded minimal surface in R* with bounded curvature.

We now prove that M is also proper when OM # (@. Since OM is compact, we may
assume 0 ¢ OM by removing a compact subset from M. Therefore, there exists an € > 0
such that &M C R® — B(e). Thus, Theorem 5.1 gives that M N (B(¢) — {0}) has bounded
curvature, and so, M does as well (in order to apply Theorem 5.1 we need M N (B(g)—{0})
to be nonempty; but otherwise M would have bounded curvature so we would arrive to
the same conclusion). If M were not proper in R?, then M — dM has the structure of a
minimal lamination of R* — M with a limit leaf L which is disjoint from M. Since we may
assume, after possibly removing an intrinsic neighborhood of M, that LNOM = ), then
L is complete and stable, and hence, L is a plane. Since M limits to L and has bounded
curvature, we easily obtain a contradiction to the proof of the Halfspace Theorem. Hence,
M is proper independently of whether or not dM is empty.

From now on, we will assume that M is noncompact and properly embedded in R3.
Since OM is compact (possibly empty), there exists an Ry > 0 such that OM C B(R;). It
remains to show that M has finite total curvature.

Let C € (0, 1) be the constant given by the statement of Lemma 4.1. Suppose first that
there exists Ry > R such that |Ky|R? < Cy in M —B(Rz). Applying Lemma 4.1 to each
component of M — B(Rs), such components are annular ends with finite total curvature.
Since M is proper, there are a finite number of such components and M NB(Rs) is compact.
Thus, M has finite total curvature, which proves the theorem in this case.
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Now assume that there exists a sequence {p,}, C M diverging to oo such that C; <
| Kar|R?(pn) for all n, and we will find a contradiction. The homothetically shrunk surfaces

M, = ﬁM also have curvature decaying quadratically and their boundaries collapse to

0. Thus, a subsequence of M,, converges to a minimal lamination £ of R® — {0}, whose
curvature function decays quadratically. Since |K |(ﬁpn) > (4 and we can assume

ﬁpn — Poo € S%*(1), there exists a leaf L € £ which is nonflat with p,, € L. By

Proposition 6.1, £ = {L} and L is properly embedded in R3. If the convergence of
the M, to £ has multiplicity greater than one, then L would be flat (see Lemma 3.2
and Lemma 3.4), but it is not. Also note that L is connected, and so, it must pass
through the origin. Since L is properly embedded of multiplicity one and 0 € L, we have
lim,_or~2Area(L N B(r)) = 7 and for any § > 0, there exists r(J) > 0 such that 7 <
r(8)"2Area(LNB(r(6))) < m + 6. This implies (7(8)|p,|) "2 Area(M NB(r(8)|pa])) < 7+ 0
for all n large. Since & can be taken arbitrarily small, we deduce that R~2Area(M NB(R))
is at most 7 for some sequence {R,}, — oco. Since R=?Area(M NB(R)) is not decreasing
(monotonicity formula), R~2Area(M NB(R)) must be at most 7 for all R. This inequality
implies R~2Area(L NB(R)) < 7 for all R, which by the monotonicity formula implies L
is a plane. This contradiction proves the theorem. O

Corollary 6.3 Let £ be a nonflat minimal lamination of R — {6} If L has quadratic
decay of curvature, then L consists of a single leaf, which extends to a properly embedded
manimal surface with finite total curvature in R3.

Proof. This follows easily from Proposition 6.1 and Theorem 6.2. O

Theorem 1.6 follows immediately from Theorem 6.2. We just remark that the last
statement in Theorem 1.6 follows from the finite total curvature assumption, since a
nonflat complete embedded noncompact minimal surface of finite total curvature has a
positive number of catenoidal ends and possibly finitely many planar ends. A simple
calculation shows that the growth constant C? in Theorem 1.6 depends on the maximum
logarithmic growth C of the catenoidal ends of M.

7 The moduli space F¢.

Lemma 7.1 Let M C R3 be a complete embedded connected minimal surface. If |Kp|R? <
C <1 on M, then M is a plane.

Proof. By Theorem 6.2, M has finite total curvature. The same argument given at the

beginning of Lemma 4.1 shows that f = R? is a Morse function which has at most one
critical point on M, which is a local minimum. As M is proper in R3, f attains its global
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Figure 8: The function |K|R? of Lemma 7.2 attains its maximum at z = 0, with value 1.

minimum a > 0 on at least one point p € M. By Morse Theory, M NB(a+1) is a compact
disk and M —B(a+1) is an annulus with compact boundary. By Lemma 4.1, M —B(a+1)
is a planar or catenoidal end; thus, M is a plane. O

The next lemma, whose proof is straightforward, implies that the standard catenoid has
C =1, see Figure 7.
2

Lemma 7.2 For the catenoid {cosh® z = 2% + y?}, we have |K|R* = —2 (1 + = )

cosh? z cosh? z

A family F of properly embedded minimal surfaces in R? is called compact under
homotheties, if for each sequence {M,}, C F, there exists a sequence {\,}, C R* such
that {\, M, }, converges strongly to a properly embedded minimal surface M C R3 (i.e.
without loss of total curvature or topology). We note that the family F¢ in the statement
below is not normalized in the same way as the similarly defined set in the statement of
Theorem 1.7 in the Introduction.

Lemma 7.3 Given C > 0, the family Fc of all connected embedded minimal surfaces
M C R? of finite total curvature such that |Kyr|R? < C, is compact under homotheties.

Proof. Let {M,}, C Fc be a sequence of nonflat examples. Since M,, has finite total
curvature for all n, then for each n fixed, |Ky;, |R? — 0 as R — co. Therefore, we can
choose a point p,, € M,, where |K); |R? has a maximum value C,, < C. Note that C,, > 1

(otherwise M, is a plane by Lemma 7.1) for all n. Hence, {M, = ﬁ

sequence in Fg, with bounded curvature outside 0 and with points on S?(1), where | K A

My}, is a new

takes the value C,. After choosing a subsequence, M, converges to a nonflat minimal
lamination £ of R® — {6} with |K|R? < C. By Corollary 6.3, £ consists of a single
leaf which extends to a nonflat properly embedded minimal surface L C R? of finite total
curvature. Then L € F¢, and if the M,, converge strongly to L (i.e. without loss of total
curvature), then the corollary will be proved.

For any M € Fco and R > 0, let

C(M,R) = / \KyldA  and C(M) = lim C(M, R).
MnNB(R) R—o0
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Take Ry > 0 large but fixed so that M, N B(R;) is extremely close to L NB(R;) and
C(M,, R1),C(L, Ry) are extremely close to C(L).

Assume from now on that C(M,) > C(L) for n sufficiently large and will derive a
contradiction. First we show that there exist points ¢, € M,, such that lgn| /" oo and
(|KA~4n|R2)(qn) > 1 for all n. Otherwise, there exists an R; > 0 such that for all n, the

surface M, — B(R;) satisfies |K|R? < 1. By Lemma 4.1, each component of M, — B(R;)
is a planar or catenoidal end. Hence, for all € > 0, there exists an Rs(¢) > R; such
that |C(M,, Ra(c)) — C(L)| < e, and so, {M,}, converges strongly to L, which is a
contradiction.

Let Mn = |M By the same argument as before, a subsequence of {M }n converges
to a nonflat properly embedded minimal surface I’ ¢ R® with finite total curvature.
Furthermore, the balls B(| 1|) collapse into 0. In particular, 0 € L’. Take 7 > 0 small
enough so that L' N B(r) is a graph over a convex domain § in the tangent plane TzL'.
Take n large enough so that £ TaT | is much smaller than r. Since the M converge to L with
multiplicity one, for all n large, M, N S%(r) is a graph over the planar convex curve 0S).
Furthermore, M, NB(r) is compact, and so, the maximum principle implies M, NB(r) lies
in the convex hull of its boundary. Therefore, ]\7 OB( ) must be a graph over its projection
to the tangent plane TgL', which contradicts that M, N B(| |) has the appearance of an
almost complete embedded finite total curvature minimal surface with more than one end.
This contradiction finishes the proof. O

Proposition 7.4 Let M C R? be a connected properly embedded minimal surface. If
|Kp|R? <1 on M, then M is either a plane or a catenoid centered at 0.

Proof. Let V denote the Levi-Civita connection of M7, o its second fundamental form and
N its unit normal or Gauss map. Let f = R? on M. First we will check that the hessian
V2f is positive semidefinite on M. Let v C M be a unit geodesic. Then (fov) = 2(v,~")
and

(V2O (s A) = (Vo V)Y =7 (V) = (for)" =207+ (v.7")
=201+ (y,V /7’ +o(v,7/)N)) =201+ 0(7’ V), N)) = 2(1 = o (v, )1 (v, N))I)

> 2(1 =/ IKul[ (v, N > 2(1 = /|Kumllv]) = 0,

where equality in (A) implies that 7' is a prlnc1pal direction at v and equality in (B)
implies that M is tangential to the sphere S?(|y|) at ~.
Let p € M such that (V2f), has nullity. We claim that

e This nullity is generated by a principal direction v at p, and (VZf),(w,w) > 0 for
all w € T, M with equality only if w is parallel to v.
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e M and S%(|p|) are tangent at p (i.e. p is a critical point of f).
o (|Km|R?)(p)=1.

Everything is proved except the second statement of the first point. Let a = a(s) be
the unit geodesic of M with a(0) = p and w = &(0) L v. Then (VZf),(w,w) = 2(1 +
o(w,w)(p, N)) =2(1 —o(v,v){p, N)) = 2(1 — (—=1)) = 4 > 0. Now the statement follows
from the bilinearity of (V2f),.

Let ¥ = {critical points of f}. We claim that if 4:[0,1] — M is a geodesic with
7(0), (1) € &, then foy = constant. To see this, first note that (foy)” = (V2f), (7,7 >
0, and thus, (f o)’ is not decreasing. As v(0),v(1) € X, then (f o)’ vanishes at 0 and
1, and so, (f o~)" =0 in [0, 1], which gives our claim.

Next we will show that ¥ coincides with the set of global minima of f. Let p € ¥ and
let pg € M be a global minimum of f (note that py exists and we can assume p # pg).
Let v be a geodesic joining p to pg. By the claim in the last paragraph, any point of « is
a global minimum of f; so in particular, p is a global minimum.

Assume now that > consists of one point, and we will prove that M is a plane. The
function f has only one critical point p, which is its global minimum. If Nullity(VZ2f), =
{0}, then f is a Morse function. By Morse theory, M is topologically a disk. Since M has
finite total curvature by Theorem 6.2, then M is a plane. Now assume Nullity(V2f )p #
{0}. Thus, (V2f),(w,w) > 0 for all w € T, M with equality only for one of the principal
directions at p. Therefore, a neighborhood of p is a disk D contained in R* — B(f(p)).
Again Morse Theory implies that M — D is an annulus, and so, M is a plane.

Finally, suppose > has more that one point, and we will prove that M is a catenoid.
Take pg,p1 € X. Let 4:[0,1] — M a geodesic with (0) = pg, (1) = p1. By the arguments
above, v C X is made entirely of global minima of f. Let a = f(v) € [0,00). If a = 0,
then M passes through 0, and so, f has only one global minimum, which in turn implies
that ¥ has only one point, which is impossible. Hence, a > 0 and v C Sz(a). Since
(V2£), (7)) = (f o) =0, (V2f), has nullity. Since v is geodesic of M,

7// = 0-(7/7 7/)N (g) 0-1(7/7 7/)%7

where o stands for the second fundamental form of S*(a) and in (C) we have used that
the normal vector N to M at + is parallel to v and that (|K/|R?) oy = 1. Hence,
is a geodesic in S%*(a), i.e. an arc of a great circle. By analyticity and since M has no
boundary, the whole great circle I" that contains 7 is contained in M (and I' is entirely
made of global minima of f). By the above arguments, M is tangent to S?(a) along T.
Note that the catenoid C with waist circle I'" also matches the same Cauchy data. By
uniqueness of this boundary value problem, M = C. O
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Remark 7.5 There exists an € > 0 such that if a properly embedded minimal surface
M C R3 satisfies |Kpr|R? <1+ ¢, then M is a plane or a catenoid.
Proof: Otherwise, for all n, there exists an M,, € F 1 which is never a catenoid. Since

{M,}, C Fa, Lemma 7.3 implies we can find \,, > 0 such that {An My}, converges to a
nonflat properly embedded minimal surface M € F». In fact, since A\, M,, € F, 1 we have

M € Fi, and so, Corollary 7.4 implies M is a catenoid centered at 0. Since the A, M,
converge strongly to M, they must also be catenoids, which gives the desired contradiction.

The statements in Theorem 1.7 follow directly from Lemmas 7.1, 7.3 and from Propo-
sition 7.4.

8 The local picture theorem on the scale of curvature.

In this section, we will study the local geometry of embedded minimal surfaces in a ho-
mogenously regular Riemannian three-manifold in neighborhoods of certain points of large
curvature. We will prove a local structure result that will be crucial in obtaining inter-
esting global results and applications in the following sections. More specifically, we will
consider a complete embedded minimal surface M of unbounded curvature in a homoge-
neously regular three-manifold IV, and obtain from M certain limits which we can consider
to be properly embedded minimal surfaces in R®. Our goal here is to prove Theorem 1.5
in the Introduction, which describes in detail how we will obtain these limits.

The proof of Theorem 1.5 is a blow-up technique, where the scaling factors are the
inverse of the square root of the absolute curvature at points of almost maximal curvature,
a concept which we develop below. After the blowing-up process, we will find a limit
which is a complete minimal surface with bounded Gaussian curvature, conditions which
are known to imply properness for the limit. This properness will lead to the conclusions
of Theorem 1.5. In particular, the proof of Theorem 1.5 is completely independent of
Corollary 5.4, in whose proof we used this local picture theorem on the scale of curvature.

Recall that M C N is a complete embedded minimal surface with unbounded curvature
in a homogeneously regular three-manifold. After a fixed constant scaling of the metric
of N, we may assume that the injectivity radius of N is greater than 1. The first step
in the proof of Theorem 1.5 is to obtain special points p], € M, called blow-up points or
points of almost mazimal curvature. First consider an arbitrary sequence of points g, € M
such that |Kjps|(gn) > n?, which exists since Ky is unbounded. Let p!, € Bas(gn, 1) be a
maximum of h, = |K|das(-, 0Ba(qn, 1))?, where Bys(g,, 1) denotes the intrinsic metric
ball in M centered at g, with radius 1 and dj; stands for the intrinsic distance on M.

We define X, = /| K| (pl,). Note that

X, = Xydas (0, 0Bar(ans 1) = \/ha @) = V() = /[ Kt (@) = m.
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Fix ¢t > 0. Since A, — oo as n — 00, the sequence {\,By(p),, 1) }n converges to the ball

B(t) of R® with its usual metric, where we have used geodesic coordinates centered at p/,
and identified p/, with 0. Similarly, we can consider {\, B (pl,, 3-)}n to be a sequence

of embedded minimal surfaces with boundary, all passing through 0 with curvature —1 at
this point. We claim that the curvature of A/, Bys(p),, )\i,) is uniformly bounded. To see

this, pick a point 2z, € By (pl, ﬁ) Note that for n large enough, z, lies in Bys(gn, 1).

Then,
VIEM|(zn) Vhn(zn) < D (P, 0Bu(gn; 1))

/\% B /\%dM(Zm aBM(Qm 1)) a dM(Zm aBM(Qm 1)) '
By the triangle inequality, dys(pl,, 0Bar(gn, 1)) < /\L, + dps(zn, OB (gn, 1)), and so,

(6)

0, OBulan ) _ |, t
dM(Zm aBM(Qm 1)) a /\;LdM(Zm aBM(Qm 1))
<14 ! <1+ (7)

)
A (dM(pén 9Bun(qn, 1)) — ;7) n—t
which tends to 1 as n — oo.

It follows that after extracting a subsequence, that the surfaces A/, Bys(p),, )\L,) con-
verge smoothly to a compact embedded minimal surface My (t) contained in B(?f) with
bounded curvature, that passes through 0 and with curvature —1 at the origin (perhaps
the boundary of M, (t) is not smooth). Consider the compact surface M, (1) together
with the surfaces X, By (pl,, /\L,) that converge to it (after passing to a subsequence). Note
that My (1) is contained in ]\}oo = Uss>1 Moo(t), which is a complete injectively immersed
minimal surface in R3.

By construction, My, has bounded curvature, so it is properly embedded in R? [36].
It follows that for all R > 0, there exist ¢ > 0 and k£ € N such that if m > k, then
the component of [/\QnB v (DL, ﬁ)} NB(R) that passes through 0 is compact and has its

boundary on S?(R). Applying this property to R,, = /X, we obtain ¢(n) > 0 and k(n) €
)N By (p;f(n)a a

t(n)

N7
Ak(n)

N satisfying that if we let M,, denote the component of By (pz(n), )
. . . VA

that contains p;f(n), then M, is compact and has its boundary on OB N(pz(n), T(n’:) Clearly

this compactness property remains valid if we increase the value of k(n). Hence, we may

assume without loss of generality that

/\/
t(n)(n+1) < k(n) for all n, //\" — 0 asn — oo.
Ak(n)
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We now define p,, = p;f(n), En = ﬂ and \, /\;C(n). Then it is easy to check that

k(n)
the pp, en, A and M, satisfy the conclusions stated in Theorem 1.5 (in order to prove
item 2 in the statement of Theorem 1.5, simply note that equations (11) and (12) imply

that wf:”"' = \//\|KM”| <1+ % <1+ —, where the last inequality follows from

k(n)
t(n)(n + 1) < k(n)). This finishes the proof of Theorem 1.5.

Remark 8.1 If the surface M C N in Theorem 1.5 were properly embedded, then the
argument needed to carry out its proof could be formulated in a more standard manner
by using the techniques developed in [36]; it is the nonproperness of M that necessitates
our being more careful here in defining the limit surface M,,. We note that the main
argument used here is also useful in other related contexts and we will refer to it in the
next section when we prove the Dynamics Theorem.

9 The space D(M) of dilation limits and the Dynamics The-
orem.

We now prove Theorem 1.9 stated in the Introduction. Given a collection A = {A,}aer
of closed sets in R3, then the Hausdorff distance D between pairs of compact sets in R?
induces a distance function d on A by:

i LS
d(Auy, Aay) = Z 5D Ao, NB(n), A, NB(nN)).

Suppose M is a nonflat properly embedded minimal surface in R®. Recall that we
defined in the Introduction the set D(M) of all properly embedded minimal surfaces in R
which are C'-limits (with multiplicity one) of divergent sequences of dilations of M. By
choosing A to be the set D(M), we acquire a metric space structure on D(M). Suppose
that a sequence {M,}, C D(M) converges with multiplicity one in this metric space to
a M' € D(M) (By “converges with multiplicity one”, we mean that the local areas of
the sequence of surfaces converge to the local areas of the limit surface.) Standard elliptic
theory implies that the sequence of surfaces also converges to M’ in the topology of uniform
C*-convergence on compact sets, for any k € N. We will use this fact soon when we check
that the metric space structure of the subspace Di(M) = {¥ € D(M) | 0 € ¥, |Kx| <

, | Ks|(0) = 1} gives rise to the topology of uniform C*-convergence on compact subsets
of R3.

In the Introduction we also defined a D-invariant subset A C D(M) as a nonempty
subset such that D(3) C A for all ¥ € A. Furthermore, A is a minimal D-invariant set of
D(M) if contains no proper nonempty D-invariant subsets. Any element ¥ in a minimal
D-invariant subset of D(M) is called a minimal element of D(M).
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It turns out that every minimal element ¥ of D(M) which does not have finite total
curvature satisfies the following remarkable periodicity property. Fix any R > 0, and
let ¥ denote the portion of ¥ inside the open ball of radius R centered at the origin.
Then, for all positive d; and ¢, there exists a positive number do > d; and a collection
{B,, = B(pn, Ry)}» of disjoint open balls such that:

e The surfaces 3, = }%((E NB,,) —pn) can be parametrized by X so that as mappings
they are e-close to ¥ in the C?-norm.

e If d(n,m) denotes the distance of the ball B,, to the ball B,,, then for each n the set
of numbers D,, = {d(?%—’:@)}m?gn is bounded from below by d; and the infimum of D,

is less than ds.

In particular, for a minimal element 3 of infinite total curvature, each compact subdomain
of the surface can be approximated with arbitrarily high precision (under dilation) by an
infinite collection of disjoint compact subdomains of the surface.

As direct consequences of Definition 1.8 in the Introduction, we have:

(i) If ¥ € D(M) and D(X) = O, then {¥} is always a minimal D-invariant set.
(ii) ¥ € D(M) is dilation-periodic if and only if ¥ € D(X).
(iii) Any minimal element ¥ € D(M) is contained in a unique minimal D-invariant set.

(iv) If A € D(M) is a minimal D-invariant set and ¥ € A satisfies D(X) # O, then
D(X) = A (otherwise D(X) would be a proper nonempty D-invariant subset of A).
In particular, ¥ is dilation-periodic.

(v) If A € D(M) is a D-invariant set and ¥ € A is a minimal element, then the (unique)
minimal D-invariant subset A’ of D(M) which contains ¥ satisfies A’ C A (otherwise
A’ N A would be a proper nonempty D-invariant subset of A').

Next we start the proof of Theorem 1.9. Suppose M is a properly embedded nonflat
minimal surface in R3, and firstly assume that M has finite total curvature. Then, its
total curvature outside of some ball in space is less than 27, and so, any ¥ € D(M) must
have total curvature less than 27, which implies ¥ is flat. This implies D(M) = O.

Reciprocally, assume that D(M) = ) and M does not have finite total curvature.
By Theorem 1.6, M does not have quadratic decay of curvature, and so, there exists
a divergent sequence of points z, € M with (|Ky/|R?)(2,) — co. Hence, there exists
another divergent sequence of points ¢, € M with (|Ky|R?)(g,) > n?. Let p, be a
maximum of the function h,, = [Ks|dgs(-, 0B(qn, @))2. Note that {p,}, diverges in R?

(because |p,| > @) We define A\, = v/|Ks|(prn). By similar arguments as those in the
previous section, A, diverges and the sequence {\,,(M —p,,)}, converges (after passing to a
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subsequence) to a minimal lamination £ of R? with a nonflat leaf L which passes through
0 with |K7|(0) = 1. Furthermore, the curvature function K, of £ satisfies |K,| < 1
and so, the leaf L of £ passing through 0 is properly embedded in R®. By the Strong
Halfspace Theorem, £ consists just of L, and the convergence of the surfaces \,(M — py,)
to L has multiplicity one (since L is not flat). Therefore, L € D;(M), which contradicts
that D(M) = (). This proves the equivalence stated in Theorem 1.9.

Assume now that D(M) # ). The arguments in the last paragraph and the discussion
in the second paragraph of this section show that Dq(M) # @ and that the topology on
D1 (M) of uniform C'-convergence on compact sets agrees with the metric space topology
on Dy(M) induced from D(M). Hence, compactness of Dy (M) will follow from sequential
compactness. Given a sequence {¥,},, C D1(M), a subsequence converges to a minimal
lamination £ of R, which has bounded curvature and curvature —1 at 0. The same
arguments given in the last paragraph imply that £ consists just of the leaf L passing
through 0, which is a properly embedded minimal surface in R?. Clearly, L € D(M),
which proves item 1 of the theorem.

From this point on in the proof, we will assume that D(M) is equipped with the
topology of uniform C'-convergence on compact sets. Using the definition of D-invariance,
it is elementary to prove that D(X) is closed in D(M) for any ¥ € D(M); essentially, this
is because the set of limit points of a set in a topological space forms a closed set. The
same techniques prove that if A C D(M) is a D-invariant subset, then its closure in
D(M) is also D-invariant. Now assume that A is a minimal D-invariant set in D(M). If
A contains a surface of finite total curvature, then the minimality of A implies A consists
only of this surface, and so, it is closed in D(M). Otherwise, for any ¥ € A, D(X) equals
A. Since D(X) is closed, A is closed as well. This proves item 2 in the theorem.

Next we prove item 3. Suppose A C D(M) is a D-invariant set. One possibility is that
A contains a surface Y of finite total curvature. By the main statement of this theorem,
D(X) = @ and by item (i) above, ¥ is a minimal element in A. Now assume A contains
no surfaces of finite total curvature. Consider the set A of all closed D-invariant subsets
of A. Note that this collection is nonempty, since for any 3 € A (recall that A cannot be
empty since it is D-invariant), the set D(X) C A is such a closed nonempty D-invariant
set by the first statement in item 2. A has a partial ordering induced by inclusion. We just
need to check that any linearly ordered set in A has a lower bound, and then apply Zorn’s
Lemma to obtain item 3 of the theorem. Suppose A’ C A is a nonempty linearly ordered
subset. We must check that the intersection (ascp A’ is an element of A. In our case,
this means we need to prove that such an intersection is nonempty. Given A’ € A’, recall
that Al = {Z € A’ | 0€ %, |Kx| <1, |Kg|(0) = 1}. Note that A/ is a closed subset of
D(M), since A" and D1 (M) are closed in D(M). The set A} is nonempty by the following
argument. Let ¥ € A’. Since X does not have finite total curvature and A’ is D-invariant,
D(X) is a nonempty subset of A’. By item 1, Di(X) is a nonempty subset of Af, and
so, A} is nonempty and the argument is finished. Now define A} = {A] | A" € A'}. As
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Narear A1 = Narear A1 = Narear (A" N D1(M)) = (Narear A)ND1 (M), in order to check
that Macar A’ is nonempty, it suffices to show that N A is nonempty. But this is
clear since each element of A] is a closed subset of the compact metric space Di(M), and
so, the finite intersection property holds for the collection A].

Next we prove item 4. Let A C D(M) be a D-invariant subset which contains no
surfaces of finite total curvature. By item &, there exists a minimal element X € A. Since
none of the surfaces of A have finite total curvature, it follows that D(X) # . As ¥ is a
minimal element, there exists a minimal D-invariant subset A’ C D(M) such that ¥ € A’
By item (iv) above, D(X) = A’. Note that A} contains D;(X), which is nonempty since
D(X) # O (by item 1 of this theorem). Then there exists a surface 31 € A), which in
particular is a minimal element (any element of A’ is), and lies in Ay (because A’ C A
by item (v)). Finally, 3; is dilation-periodic by item (iv), thereby proving item 4 of the
theorem.

Finally, suppose ¥ € D(M) has finite genus and does not have finite total curvature.
By Theorem 1 in [30], either ¥ is a helicoid with handles or it has exactly two limit
ends. On the other hand, if ¥ is also a minimal element of D(M), then item (iv) above
implies that ¥ is dilation-periodic, which means that there exists a sequence of dilations
dp:R? — R? whose translation part diverges, such that {d,(X)}, converges smoothly to
> on compact sets. Since X has finite genus, we deduce that its genus is zero. Hence, if
¥ has finite topology, then it is simply-connected and, therefore, a helicoid (see also [36]).
Now assume ¥ has two limit ends and genus zero. Under these hypotheses, we proved
in [29] that ¥ has bounded curvature. It remains to prove that ¥ is translation-periodic
(we cannot deduce this from Theorem 1 in [29] since it only insures that there exists a
divergent sequence p, € R? such that after extracting a subsequence, ¥ — p, converges
on compact subsets of R? to a surface with the same appearance as ¥, but that might be
different from ). Theorem 1 in [29] also implies ¥ has a well-defined nonzero flux vector
F € R3. If h, is the homothety part of d,,, then clearly h,(F) is a flux vector of d, (%),
which implies that the length of h, (F') converges to the length of F'. Therefore, as n — oo,
the homotheties h,, converge to the identity map, and so, X is translation-periodic. This
finishes the proof of Theorem 1.9.

Many of the techniques that we have used in the proof of the Dynamics Theorem
and in the proof of the local picture theorem on the scale of curvature can be applied
to obtain results for minimal hypersurfaces in R™"!, when n > 2. If M" is a complete
(not necessarily proper) embedded minimal submanifold of R*™! and has bounded second
fundamental form in any ball in R"*!, then the closure M™ has the structure of a Cl:-
minimal lamination of R"* by minimal hypersurfaces. If M™ does not have bounded
second fundamental form, then the proof of the local picture theorem on the scale of
curvature shows that there exists a divergent sequence of compact subdomains M, C
M™, which, after translation and homothety, converge to a complete embedded minimal
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submanifold M7 C R™! passing through the origin 0, with the norm of the second
fundamental form of M2, at 0 being 1, and the norm of the second fundamental being
bounded from above by 1. Tt follows that M7 is a nonflat minimal lamination of R™*?;
however, we do not know in this case if M7 is a properly embedded surface in R"*!. If
M is stable, then the same property holds for the universal cover of M and that of any
leaf of M.

Suppose now that M™ is a properly embedded minimal hypersurface in R, If we
denote by Di(M™) the set of minimal dilation limit laminations of M"™ passing through
the origin, with the lengths of their second fundamental forms 1 at the origin and bounded
by 1, then D;(M") becomes a compact metric space with the topology of uniform C'-
convergence on compact sets of R"™1. Note that D;(M™) also makes sense if M™ is a
minimal lamination of R"™!, instead of a properly embedded minimal submanifold. In
this set up one also obtains an interesting dynamics type result for Di(M™) with the
“minimal” elements being certain minimal laminations. It is interesting to contemplate
how these results might play a role in understanding complete stable embedded minimal
hypersurfaces in R™"*1.

10 Applications of the Dynamics Theorem.

In this section, we present several different applications of the Dynamics Theorem 1.9,
which are summarized in the statement of Theorem 1.10 in the Introduction. We focus
our attention on obtaining interesting properly embedded minimal surfaces in R? which are
dilation limits of a sequence of compact subdomains on a complete (possibly nonproper)
embedded minimal surface in R3, where this surface satisfies some interesting geometric
constraint.

10.1 Classical conjectures related to the Dynamics Theorem.

Consider a complete nonflat minimal surface M C R? which satisfies one of the following
three properties:

1. The Gauss map of M misses a subset A C S?(1) which contains two nonantipodal
points.

2. M has a nontrivial well-defined injective associate surface fy: M — R3.

3. M is a properly embedded minimal surface of quadratic area growth and neither M
nor any element in D (M) has finite total curvature.

By Theorem 1.10 in the Introduction (that we will prove in Subsection 10.2), M gives rise
to special limit minimal surfaces, namely properly embedded dilation-periodic minimal
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surfaces with infinite genus and bounded curvature, which satisfy the same hypothesis in
1, 2 or 3 as M. It is our hope that the conditional existence of these dilation-periodic
examples will lead to positive solutions of the following conjectures.

Conjecture 10.1 (Meeks, Pérez, Ros) If M is a complete nonflat embedded minimal
surface in R3, whose Gauss map misses a nonempty subset A C S*(1) which does not
consist just one point or of exactly two antipodal points, then A is a pair of antipodal
points and M 1is a singly or doubly-periodic Scherk minimal surface. On the other hand, if
the Gauss map of M misses exactly 2 antipodal points, then M is a catenoid,, a helicoid,
a Riemann minimal example or a doubly-periodic minimal surface with a natural quotient
having genus one, total curvature —8m and parallel ends (these last surfaces have been
recently classified by Pérez, Rodriguez and Traizet [40]).

Conjecture 10.2 (Meeks) FEvery intrinsic isometry of a complete embedded nonflat em-
bedded minimal surface in R3 extends to an ambient isometry. (The similar conjecture is
false without assuming embeddedness, since it is false for Enneper’s surface which is not

embedded. )

Conjecture 10.3 (Meeks) A complete embedded connected minimal surface M C R3
with quadratic area growth has a unique limit tangent cone at infinity. Furthermore, if M
has quadratic area growth constant 2w, then M is a catenoid or a singly-periodic Scherk
minimal surface (see the recent paper [38] by Meeks and Wolf for the solution of this second
statement in the infinite symmetry case).

10.2 The proof of Theorem 1.10.

Recall that the M C R? in the statement of this theorem is a complete embedded minimal
surface that satisfies one of the properties 1, 2, 3 stated at the beginning of Subsection 10.1.

Note that each of the properties 1, 2 above implies that M does not have finite total
curvature, and both properties are preserved by limits under translations and rescalings
(thus such limits also have infinite total curvature). First assume that M is proper in
R3. If M satisfies 1 or 2, then we easily deduce that neither M nor any surface in D(M)
(which makes sense because M is proper) has finite total curvature. The same property is
true if M satisfies 3, by assumption. In any case, the Dynamics Theorem, Theorem 1.9,
implies that D(M) # @ and item / of the same theorem applied to A = D(M) gives
that there exists a minimal element > € Dq(M), which is a properly embedded dilation-
periodic minimal surface with bounded curvature. We claim that ¥ has infinite genus.
Otherwise, item 4 of Theorem 1.9 implies that > is a helicoid or a genus zero surface
with two limit ends which is translation-periodic. The helicoid limit is clearly impossible
if M satisfies properties 1, 2 or 3. If ¥ has genus zero with two limit ends, then its
Gauss map omits exactly 2 antipodal directions (in contradiction with property 1), ¥ has
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a well-defined nonzero flux vector (which contradicts 2) and ¥ has cubical area growth
(which contradicts 3). Therefore, ¥ has infinite genus. It is clear that ¥ satisfies the
same property 1, 2 or 3 as M. This proves part (i) of Theorem 1.10 under the additional
hypothesis that M is proper in R?. Note also that the same argument demonstrates the
first statement in part (7) of the same theorem.

If M has bounded curvature, then it is proper in R® (Theorem 1.6 in [36]) and we can
apply the arguments in the previous paragraph. Now assume M has unbounded curvature.
Applying Theorem 1.5, we conclude that there exists a properly embedded minimal surface
31 which is a limit of compact regions of M under a sequence of dilations. As before,
D(X4) contains no surfaces of finite total curvature, so we can apply the preceding case
(when M was assumed to be proper) to Xy, thereby proving part (i) of Theorem 1.10 and
the second statement in part (7).

It remains to prove item (%i) of the theorem. As before, the fact that no surfaces in
D(M) have finite total curvature implies that any minimal element in D(M) is dilation-
periodic. A straightforward application of the monotonicity formula gives that if M has
quadratic area growth constant C' > 0, then a translated of M has quadratic area growth
constant at most C. From here we deduce directly that if M has quadratic area growth
constant C' > 0, then any surface in D(M) also has quadratic area growth constant at
most C. If a minimal element ¥ € D(M) does not satisfy the last statement of item (i),
then ¥ has a limit tangent cone at infinity C with a point p € C N S?(1) where C is not
smooth and such that the area density of C at p (counted with multiplicity as a limit of 3)
is strictly less than the area density of C at 0. Then there exists a sequence of homotheties
{hn(z) = Tz}, with the positive numbers 7 converging to zero, such that ¥, = h, (%)
converges to C as n — oo. Since C is not smooth at p, there exists a sequence p, € X,
converging to p with |Ky, |(pn) — o0 as n € oco. After possibly exchanging p,, by points of
almost maximal curvature on ¥, converging to p (in the sense of Section 8) and extracting
a subsequence, the surfaces Xy, = /[Kx, | (pn)(Zn — pn) converge to a properly embedded
minimal surface ¥/ € R® that satisfies 0 € ¥/, |Ksy| < 1 and |Ksy[(0) = 1. Since the
numbers 7,, of h, converge to zero and p, — p € S?(1), we deduce that 3, can be written
in the form %, = A (2 — gp) for a divergent sequence {g,}, C R® and some A, > 0. In
particular, ¥’ € D(X), and thus, 3’ € D1(X). But ¥/ has area growth constant strictly less
than the area growth constant of 3, which is a contradiction because ¥ € D(X') = D(X).
Now the proof of Theorem 1.10 is complete.

10.3 Embedded minimal surfaces which are a-stable.

Another condition which is preserved by dilations limits and that cannot be satisfied by
a nonflat complete embedded minimal surface of finite total curvature is the condition of
a-stability, that we study below.
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Definition 10.4 Given a¢ > 0, we say that an orientable minimal surface M in a com-
plete flat three-manifold N is a-stable, if for any compactly supported smooth function
u € C3°(M), we have

/ (IVu? + aKu?) dA > 0, (8)
M

where Vu stands for the gradient of v and K, dA are the Gaussian curvature and the
area element on M, respectively (the usual stability condition for the area functional
corresponds to the case a = 2).

Fischer-Colbrie and Schoen [13] proved that if M C R3 is a complete, orientable a-stable
minimal surface, for a > 1, then M is a plane. This result was improved by Kawai [18] to
a > 1/4, see also Ros [43].

We claim that if M is a-stable in a complete flat three-manifold IV, then either M is
flat or it is transient for Brownian motion (see e.g. Grigor’yan [14] for general properties of
the Brownian motion on manifolds). To see our claim, first recall that Fischer-Colbrie and
Schoen proved (see Theorem 1 in [13]) that a-stability for an orientable minimal surface
M is equivalent to the existence of a positive solution u of the equation Au — aKu =0
on M. Since N is flat, then K is nonpositive and so, u is superharmonic. If we assume
that M is not flat, then u cannot be constant. It is well-known (see e.g. Grigor’yan [14],
Theorem 5.1) that the existence of a nonconstant positive superharmonic function on M
is equivalent to the property that M is transient for Brownian motion. Now our claim is
proved. This property will be used to prove the following statement.

Theorem 10.5 Let N be a complete orientable flat three-manifold and let a > 0. Then,
any complete orientable embedded a-stable minimal surface M C N with finite genus is
totally geodesic.

Proof. Assume M is not totally geodesic in N. After possibly replacing M by a local
picture dilation limit on the scale of curvature, we can assume that M has bounded
curvature (the a-stability property is preserved under smooth dilation limits). To obtain a
contradiction, we just need to prove M is recurrent for Brownian motion. But any complete
embedded minimal surface of bounded curvature in a flat three-manifold is proper if it
is not totally geodesic (the closure of such a surface is a minimal lamination of bounded
curvature with a limit leaf in the nonproper case, and such a lamination lifts to a similar
nonflat minimal lamination of R?® which contradicts Theorem 1.6 in [36]). Thus, we can
assume that M has bounded curvature and it is properly embedded in N. If N is R3,
then M is recurrent for Brownian motion because it has finite genus and by Theorem 1
n [30]. If M has finite topology and N is not simply connected, then M has finite total
curvature (Meeks and Rosenberg [35]), and so, M is recurrent for Brownian motion.
Assume now that M has finite genus, infinite topology, and N is not R3. After lifting
to a finite cover, we may assume that N is R3/Sy, R? x S! or T? x R, where S is a screw
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motion symmetry of infinite order. By the main theorem in [25], any properly embedded
minimal surface in R®/Sp has a finite number of ends, and so, we may assume that this case
for N does not occur. Since a properly embedded minimal surface of bounded curvature
in a complete flat three-manifold has a fixed size embedded regular neighborhood whose
intrinsic volume growth is comparable to the intrinsic area growth of the surface (i.e. the
ratio of both growths is bounded above and below by positive constants), then the intrinsic
area growth of M is at most quadratic since the volume growth of R? x S' and of T? x R
is at most quadratic; this result on existence of regular neighborhoods appears in [45] and
also in [31]. Since M has at most quadratic area growth, it is recurrent for Brownian
motion ([14]). This completes the proof. O

The following result contains natural relations between covering maps and the notions
of a-stability and a-unstability.

Lemma 10.6 (a-Stability Lemma) Let M C N3 be a complete orientable minimal sur-
face in a complete flat three-manifold.

(a) If M is a-stable, then any covering space of M is also a-stable.

(b) If M is a-unstable and M is a covering space of M such that the components of the
inverse image of each compact subdomains of M have subexponential area growth,
then M is also a-unstable (for example, if M is a finitely generated abelian cover,
then it satisfies this subexponential area growth property)

Proof. Since a-stability is characterized by the existence of a positive solution on M of
Au — aKu = 0, then item (a) follows directly by lifting u to M.

We now consider statement (b). First note that there exists a smooth compact sub-
domain D C M such that the first eigenvalue A\; of the a-stability operator A — aK is
negative. Denote by v the first eigenfunction of the a-stability operator for D with zero
boundary values. Therefore, Av —aKv + Av =0, with Ay <0.

Let Q C M be the pullback image of D by the covering map II: M — M and u =wvoll
the lifted image of v on 2. Thus

Au—aKu+Au=0 in Q, and v =0 in 0. (9)

Let ¢ be a compactly supported smooth function on M. Using equation (9) we obtain,
after several integration by parts,

/ (|V(<pu)|2 + aKgozuz) = / (—gouA(gou) + aKgozuz)

Q Q

= / (—gozuAu — 2(VopVu)ou — upAp + aKgozuz) =
Q
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1
/ (x\lgozuz — —(Vp?Vu?) — u290A<p> = / (/\1902u2 + |V<p|2u2) .
Q 2 Q

Reasoning by contradiction, assume that M is a-stable. Then the last integral is nonneg-
ative, and we conclude that

—/\1/ gozuzg/ |V<p|2u2. (10)
Q Q

Denote by r : M — R the Riemannian distance to a fixed point ¢ and B(R) = {r < R} the
corresponding intrinsic geodesic ball. Consider the cut off Lipschitz function ¢, defined
by
1 in B(R),
Yr=14 0 in M — B(R+1),
R+1—r in B(R+1)— B(R).

By a standard density argument, we can take ¢ = ¢ in (10) and obtain, for almost any
R >0,

—Al ’LL2 S/ ’LL2 _/ ’LL2,
QNB(R) QNB(R+1) QNB(R)

which is impossible as the hypothesis implies that the function

R u?.
QNB(R)

has subexponential growth. This contradiction proves the lemma. O

An interesting question is to decide for which values of @ > 0 there exists a nonflat com-
plete orientable embedded a-stable minimal surface M C R3. Since a-stability is clearly
preserved by homotheties, limits and by taking covering spaces, our above techniques re-
duce this problem to the case of a properly embedded infinite genus minimal surface in
R? which is dilation invariant. More generally, these arguments prove:

Theorem 10.7 If there exists a complete embedded nonflat two-sided a-stable minimal
surface in a complete flat three-manifold, then there exists a properly embedded nonflat
a-stable minimal surface in R® which has infinite genus, bounded curvature and is dilation-
periodic.

If we do not assume embeddedness, then there are nonflat complete a-stable surfaces.
The following lemma give us a way to obtain some of these.

Lemma 10.8 If an orientable minimal surface M in R? is simply connected and its Gauss
map omits three spherical values, then M is a-stable for some a > 0 depending only on
the omitted values.
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Proof. We argue as follows: if we consider on M the complete hyperbolic metric ds? of
constant curvature —1, it is known that for any compactly supported smooth function
we have [y, |Viu|?dA; > 1 [,; u* dA;, where the length |Vyu| of the gradient of u and the
measure dA; are taken with respect to the metric ds?. On the other hand, as the Gauss
map N omits 3 values, we have that [V N| < ¢ for some constant ¢ depending only on the
omited values, see [43]. Therefore, we obtain that [y, |[Viu?d4; > 25 [, [V1N|*u? dA;,
which, due to the conformal invariance of the Dirichlet integral and using that |[VN|? =
—2K, implies that M is (4c?)~!-stable. O

To finish this section we collect all the information we have concerning the a-stability
of the doubly periodic Scherk surface. Note that although this surface is not recurrent, it
is close to that condition.

Proposition 10.9 Let M C R? be any of the doubly-periodic Scherk surfaces and T' the
(rank 2) group of translations which preserve M. Then

1. M is a-unstable, for any a > 0. In fact, any nonflat doubly periodic minimal surface
is a-unstable.

2. The universal covering of M 1is a-stable, for some a > 0.
3. M does not admit bounded nonconstant harmonic functions.

4. There are nonconstant positive harmonic functions on M.

Proof. A nonflat doubly-periodic minimal surface M C R? (i.e. a properly embedded
minimal surface invariant under the translations in I') is never a-stable. This follows from
Lemma 10.6 and the fact that the quotient surface M /T C T? xR is recurrent for Brownian
motion (the height function restricts to a proper harmonic function on the ends of such a
surface) and, then, a-unstable. That implies 1.

As the Gauss maps of any Scherk surface omits four values in the sphere, item 2 follows
from Lemma 10.8.

Item 3 follows from Theorem 2 in [20]. However, each of the doubly-periodic Scherk
surfaces in R? admits a nonconstant positive harmonic function on it (see for example [19]
using the fact that the Gauss map represents the surface as a Z?-cover of a four punctured
sphere, and also see [21]), which is just the assertion in item 4. O

11 The local picture theorem on the scale of topology.

Recall from Theorem 1.5 in the Introduction and its proof in Section 8, that the local
picture theorem on the scale of curvature is a tool that allows to produce, after blowing-
up a complete embedded minimal surface M in a homogeneously regular three manifold, a
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nonflat properly embedded minimal surface My, C R? with normalized curvature (in the
sense that | K, | <1 on My and 0 € My, |Kaz_|(0) = 1). The key ingredient to do this
was to find points p, € M of almost maximal curvature and then rescale the translated
surfaces M — p, by /|Ky|(pn) — 00 as n — oo. We will devote this section to obtain
a somehow similar result for a surface whose injectivity radius is zero, by exchanging the
role of the square root of | K| by 1/Iys, where I, denotes the injectivity radius function
on M. We will consider this rescaling ratio after evaluation in points p, € M of almost
concentrated topology, in a sense to be made precise later on. One of the difficulties of
this generalization is that the limit objects that we can find after blowing-up might be
not only properly embedded minimal surfaces in R3, but also new objects, namely limit
minimal parking garage structures (that we will study in Subsection 11.2) and certain
kinds of singular minimal laminations of R3.

11.1 The statement of the main theorem.

The statement of the next theorem includes the term minimal parking garage structure
on R3 which is defined in Subsection 11.2. Roughly stated, a parking garage structure is
a limit object for a sequence of embedded minimal surfaces which converges to a minimal
foliation £ of R? by parallel planes, with singular set of convergence being a locally finite set
of lines S(L£) orthogonal to £, along which the limiting surfaces have the local appearance
of a highly-sheeted double multigraph; the set of lines S(L£) are called the columns of the
parking garage structure. For example, the sequence of homothetic shrinkings %H of a
vertical helicoid H converges to a minimal parking garage structure that consists of the
minimal foliation £ of R? by horizontal planes with singular set of convergence S(£) being
the xgz-axis.

We remark that some of the language associated to minimal parking garage structures,
such as columns, appeared first in a paper of Traizet and Weber [46]. In this paper,
they use this structure to produce certain one-parameter families of complete embedded
minimal surfaces, which are obtained by analytically untwisting the limit minimal parking
garage structure through an application of the implicit function theorem. Their work also
indicates that up to homothety and rigid motion that there are only a countable number
of possible limiting minimal parking garage structures with a finite number of columns.

Theorem 11.1 (Local Picture on the Scale of Topology) Suppose M is a complete
embedded minimal surface with injectivity radius zero in a homogeneously reqular three-
manifold N. Then, there exists a sequence of points p, € M and positive numbers €, — 0
such that the following statements hold.

1. For all n, the component M, of By(pn,en) N M that contains p, is compact with
boundary OM,, C OBN(pn,en)-
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2. Let Ay = 1/Ip,(pn), where Iy, denotes the injectivity radius function of M restricted

to M,,. Then, A\pIp,, > 1 — n%—l on M, and lim,_,o ep\, = 0.

3. The metric balls A\yBN (pn, €n) of radius Ape, converge uniformly to R with its usual
metric (so that we identify p, with O for all n).

Furthermore, one of the following three possiblities occurs.

4. The surfaces \,M,, have uniformly bounded curvature on compact subsets of R® and for
any k € N, converge C* on compact subsets of R to a connected properly embedded
nonsimply connected minimal surface My, in R3 with Ing, > 1 on My, 0e M
and I (0) = 1.

5. The surfaces \pM,, converge to a limiting minimal parking garage structure of R® con-
sisting of a foliation L by planes and columns S(L), and:

5.1 S(L) contains a line Ly orthogonal to the planes in L which passes through the
origin.

5.2 S(L) contains a parallel line Ly of distance 1 from L.

5.3 All of the lines in S(L) have distance at least 1 from each other.

5.4 1If there exists a bound on the genus of the surfaces A\, M,,, then S(L) consists of
two components L1, Ly with associated limiting double multigraphs being oppo-
sitely handed.

6. The surfaces \pM,, converge to a singular minimal lamination £ of R with singular
set S # O, and singular set of convergence S(L) C R3 — 8. Let A(L)S U S(L).
Then:

6.1 There exists Ry > 0 such that the surfaces (A, M,)NB(0, Ro) do not have bounded
genus.

6.2 The sublamination P of L consisting of planes is nonempty.

6.3 The set A(L) is a closed set of R which is contained in UpcpP. Furthermore,
there are no planes in R3 — L.

6.4 Every plane in A(L) intersects S(L) in an infinite set of points, which are at
least distance 1 from each other in the plane.

Corollary 11.2 Suppose M is a complete embedded minimal surface with injectivity ra-
dius zero in a homogeneously regular three-manifold N, and suppose M does not have a
local picture on the scale of curvature which is a helicoid. Then every local picture on the
scale of topology has bounded curvature and satisfies statement 4 in Theorem 11.1. Fur-
thermore, the set of local pictures for M in statement 4 form a compact set with respect to

49



the topology of C*-convergence on compact sets of R®, and so, there is a constant C' such
that every local picture on the scale of topology has area growth at most CR3.

Remark 11.3 We conjecture that item 6 in Theorem 11.1 cannot occur; in other words,
when the curvature functions of the surfaces \,, M,, become unbounded in a fixed compact
set 1 R?’, then item 5 must occur. Note that if M has finite genus or the sequence {\, M, },,
has uniformly bounded genus fixed size in small intrinsic metric balls, then item 6 does
not occur, since 6.1 does not occur. Now assume that for a given M as in Theorem 11.1,
item 6 occurs. Since L is the limit of a sequence of compact minimal surfaces {M,},
which satisfy the hypothesis of Theorem 12.2 in the next section, then Theorem 12.2 gives
further detailed information concerning L.

The proof of Theorem 11.1 depends on the recent Minimal Lamination Closure Theo-
rem by Meeks and Rosenberg [32], which we state below for the readers convenience.

Theorem 11.4 (Minimal Lamination Closure Theorem) If M is a complete em-
bedded minimal surface with positive injectivity radius in a Riemannian three-manifold N,
then the closure M of M has the structure of a CY*-minimal lamination of N.

In [32], Meeks and Rosenberg apply the above theorem, together with our Theo-
rem 11.1, to prove that the closure of a complete embedded minimal surface of finite
topology in a three-manifold IV that is a product of a Riemannian surface ¥ with R has
the structure of a C“-minimal lamination. They then apply this result to prove that if
31 is a homogeneously regular surface of nonnegative curvature which is not a flat torus,
then every complete embedded connected minimal surface of finite topology in N must
be properly embedded in IV; if 3 is a flat torus, then they show that the only nonproper
complete minimal surfaces of finite topology in X x R are totally geodesic. This last result
generalizes a recent theorem of Colding and Minicozzi [2] who proved this result in the
case N = R® = R? x R. We will also need some of the recent results of Colding and
Minicozzi contained in [9, 8, 3].

11.2 Parking garages and limiting parking garage structures on R3.

In order to understand the local picture theorem on the scale of topology, we first need
to develop the topological structure of a parking garage structure on R® and relate this
structure to how minimal surfaces converge to it.

In [46], Weber and Traizet produced an analytic method for constructing a one-
parameter family of properly embedded periodic minimal surfaces in R®, which in the
limit are approximated by a finite number of regions on vertical helicoids in R? that have
been glued together in a consistent way. They referred to the limiting configuration as
a parking garage structure with columns corresponding to the axes of the helicoids that
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they glue together. Most of the area of these surfaces, just before the limit, consists of
very flat horizontal levels (almost horizontal densely packed horizontal planes) joined by
the vertical helicoidal columns.

One can travel quickly up and down the horizontal levels of the limiting surfaces
only along the helicoidal columns in much the same way that some parking garages are
configured for traffic flow; hence, the name parking garage structure.

We now briefly describe the topological picture of a parking garage. Consider a possibly
infinite, nonempty, locally finite set of points P C R? and a related collection D of open
round disks centered at the points of P such that the closures of these disks form a
pairwise disjoint collection. Consider an onto representation o: H;(R* — D) — Z such that
o takes the value of +1 or —1 on the homology classes represented by the boundary circles
of the disks in D. Let m: M — R? — D be the associated infinite cyclic covering space
corresponding to the kernel of the composition of the natural map from 7 (R? — D) to
H,(R? — D) with o. It is straightforward to embed M into R? so that under the natural
identification of R? with R? x {0}, the map 7 is the restriction to M of the orthogonal
projection of R to R? x {0}. Furthermore, in this embedding, we may assume that
the covering transformation of M corresponding to an n € Z is given geometrically by
translating M vertically by (0,0, n). In particular, M is a periodic surface with boundary
in (R2 —D) xR. The surface M has exactly one boundary curve on each cylinder over the
boundary circle of each disk in D. We may assume that each of these boundary curves is
a helix.

Let M (%) be the vertical translation of M by (0,0,1) and note that M U M(3) is
an embedded disconnected periodic surface in (R? — D) x R with a double helix on each
boundary cylinder in 9D x R. The topological parking garage corresponding to the repre-
sentation o is now obtained by attaching to M U M(3) an infinite helicoidal strip in each
of the solid cylinders in D x R; by choosing M appropriately, the resulting surface G is
smooth. The surface G gives the desired topological picture of a parking garage surface.

Since in minimal surface theory, we only see the parking garage structure in the limit,
when the helicoidal strips in the cylinders of D x R become arbitrarily densely packed,
it is useful in our construction of G to consider parking garages G(t) invariant under
translation by (0,0,t¢) with ¢t € (0, 1] tending to zero. For t € (0, 1], consider the affine
transformation Fy(z1, xe, x3) = (r1, x2, txs). Then G(t) = F;(G). Note that our previously
defined surface G is G(1) in this new setup. As t — 0, the G(t) converge to the foliation £
of R? by horizontal planes with singular set of convergence S(L) consisting of the vertical
lines in P x R. Also, note that M depends on the representation o, so to be more specific,
we could also denote G(t) by G(t,0).

Finally, we remark on the topology of the ends of the periodic parking garage G in the
case that P is a finite set, where G = G(t, o) for some t and o. Suppose D = {D1,...,D,}.
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Then we associate to G an integer index:

1(G) = ﬁja([api]) — kel

i=1

Let G be the quotient orientable surface G = G/Z in R3 /Z, where Z is generated by
translation by (0,0,¢). The ends of G are annuli and there are exactly two of them. If
k = 0, then these annular ends of G lift to graphical annular ends of G. If k # 0, then
the universal cover of an end of G has |k| orientation preserving lifts to G, each of which
gives rise to an infinite multigraph over its projection to the end of R? x {0}. Finally,
note that G has genus zero if and only if n = 1 and k¥ = £1 in which case G is simply
connected, or n = 2 and k = 0 in which case G has an infinite number of annular ends
with two limit ends (see the proof of Theorem 11.1 for a proof of this statement). Since
G is periodic, then it has infinite genus precisely when |k| > 1 or n > 2 and in these cases
it has exactly one end. To see why this last sentence holds, one argues as follows. Note
that since |k| > 1 or n > 2, there exist at least two points x1,x2 € P with associated
values o([0D1]) = o([0D2)) for the corresponding disks D1, Dy in D around xy, z2 (up to
reindexing). Consider an embedded arc v in R? — P joining 1 to z3. Then one can lift
~ to consecutive levels of the parking garage G joined by short vertical segments on the
columns over z1 and xo. Let 7 denote this associated simple closed curve on G. Observe
that if 4’ is the related simple closed curve obtained by translating 4 up exactly one level
in G, then 4 and 5’ have intersection number one. Thus, a small regular neighborhood of
4 U4 on G has genus one. Since G is periodic, it has infinite genus.

The most famous example of a parking garage structure is obtained by taking the limit
of homothetic shrinkings of a vertical helicoid and one obtains in this way the foliation £
of R? by horizontal planes with a single column, or singular curve of convergence S(£),
being the z3-axis.

There exists another well known limiting minimal parking garage structure of R® with
two columns and with the columns oppositely oriented (corresponding to one right handed
and one left handed helicoid), which is obtained as a limit of the classical periodic genus
zero Riemann minimal examples Ry, t € [0, 00), as the length of the horizontal flux com-
ponent of R; goes to infinity (see [28] for a proof of these properties). Since the limiting
minimal parking garage structure of the R; has the invariant & = 0, it follows that R; has
an infinite number of planar ends with two limit ends, see Figure 9.

There is another well known minimal parking garage structure of R? with an infinite
number of columns all of which are oriented the same way. This object can be obtained as
a limit of the Scherk doubly-periodic minimal surfaces Sy, 6 € (0, ] with lattice {((m +
n)cosf,(m —n)sin®,0) | m,n € Z}, as § — 0. In this case, the surfaces converge to a
foliation of R? by planes parallel to the (z1, z3)-plane with columns of the same orientation
being the horizontal lines parallel to the zs-axis and passing through Z x {0} x {0}.
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Figure 9: Three views of a minimal parking garage structure, constructed on a Riemann
minimal example.

We refer the interested reader to [46] for further details and more examples of parking
garage structures that occur in minimal surface theory. We just note now that it also makes
sense for a sequence of compact embedded minimal surfaces M (n), with boundaries on
the boundary of balls of radius n centered at the origin, to converge on compact subsets
of R? to a parking garage structure on R? consisting of a foliation £ of R? by planes with
a locally finite set of lines S(£) orthogonal to the planes in £, where S(L£) corresponds to
the singular set of convergence of the M (n) to £. We note that each of the lines in S(L)
has an associated + or — sign corresponding to whether or not the associated forming
helicoid along the line is right or left handed.

There are two other papers [23, 26] that clarify the notion of parking garage structures
for the limit of a sequence of minimal surfaces in R3. Consider a sequence of compact
embedded minimal surfaces M(n) in R® whose boundaries diverge in R® and which are
uniformly locally simply connected in the sense that for every point p € R?, there exists
an € > 0 such that B(p,e) N M (n) consists of compact disks for n large. In such a case, the
results of Colding and Minicozzi [9] show that a subsequence M (n;) of the M (n) converges
to a possibly singular minimal lamination £ of R? with singular set of convergence S(£).
If £ is nonsingular and S(L£) is nonempty, then the curvature estimates of Colding and
Minicozzi in [9] together with the regularity results of Meeks in [26, 23] show that £
is a foliation of R® by planes with S(L) consisting of a locally finite collection of lines
orthogonal to the planes of £. In this case, one can then check that the subsequence
M (n;) converging to £ has, for n; large, the appearance in compact subsets of R? of
highly sheeted helicoids along curves “parallel” and close to the lines in S(L£). Thus, one
obtains a limiting minimal parking garage structure of R? in this case.
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11.3 The proof of the local picture theorem on the scale of topology.

In this section we will describe the extrinsic geometry of a complete embedded minimal
surface M in a homogenously regular three-manifold N, in a small intrinsic neighborhood
of a point p € M where the injectivity radius of M is extremely small. We will prove
Theorem 11.1 which shows that either M has the appearance of a properly embedded
minimal surface (homothetically shrunk) in R3 near p, a limiting minimal parking garage
structure of R?, or a special kind of singular minimal lamination of R?® (see the statement
6 of Theorem 11.1).

Let M C N be a complete embedded minimal surface with injectivity radius zero in a
homogeneously regular three-manifold. After a fixed constant scaling of the metric of IV,
we may assume that the injectivity radius of N is greater than 1. The first step in the
proof of Theorem 11.1 is to obtain special points p,, € M, called points of concentrated
topology. First consider an arbitrary sequence of points ¢, € M such that In/(g,) < %
(here Iy denotes the injectivity radius function of M), which exists since the injectivity
radius of M is zero. Let pl, € Bys(qn, 1) be a maximum of h, = Iy dps(-, 0Bar(gn, 1))

We define X/, = I/ (p!)~!. Note that

N, = Nt (B OBr(4as 1)) = ha(pl) > ha(g) = Tar(an) ™ = .

Fix ¢ > 0. Since A/, — oo as n — oo, the sequence {\ By(p!, ﬁ)}n converges to the
ball B(t) of R? with its usual metric, where we have used geodesic coordinates centered
at p), and identified p], with 0. Similarly, we can consider {\, B (p},+-)}n to be a

sequence of embedded minimal surfaces with boundary, all passing through 0 with in-
jectivity radius 1 at this point. We claim that the injectivity radius function of A, M
restricted to A, By (pl,, /\i,) is greater that some positive constant. To see this, pick a

point z, € By (pl,, ;_41) Since for n large enough, z, belongs to Bys(gs, 1), we have

1 _ hn(zn) < dM(p;naBM(qnv 1))
NoIv(zn)  Nydni (2, 0Br(gn, 1)) — dar(2n, OBar(gn, 1))

By the triangle inequality, das(p},, 0B (g, 1)) < 1 + dai(2n, OBar(gn, 1)), and so,

(11)

dM(Zm aBM(Qm 1)) a /\;LdM(Zm aBM(Qm 1))
t t
<1+ <l+—— (12)

n—t’

N, (dar (Pl 9Bar(a, 1) = 5

which tends to 1 as n — oo.
We now consider the following special case.
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() For every t > 0, the surfaces N, By(pl,, /\i,) have uniformly bounded cur-
vature.

Under the above hypothesis, it follows that after extracting a subsequence, the A/, By (pl,, /\L,)
converge smoothly to an embedded minimal surface My, (t) contained in B(¢) with bounded
curvature, that passes through 0. Consider the compact surface Moo (1) together with the
surfaces /\’ ! By(pl,, + 3 ) that converge to it (after passing to a subsequence). Note that
M+ (1) is contained in Mo = ;> Moo(t), which is a complete injectively immersed min-
imal surface in R3.

We now remark on some properties of the minimal surface M.,. By construction, the
injectivity radius function of M., has the value 1 at the origin. Since M, has nonpositive
curvature, there is an embedded geodesic loop v in My, of length 2 based at the origin
(which is a limit of such loops of X/, By (pl,, %)) By the Gauss-Bonnet formula, ~ is
homotopically nontrivial in M.,. In particular, M., is nonsimply connected and so M, is
not a plane. Also note that M is the limit of surfaces with injectivity radius approaching
1 and so M, has injectivity radius exactly 1.

Since M, C R? has positive injectivity radius, Theorem 2 in [32] states that any such
minimal surface is properly embedded in R®, and so, M., is properly embedded in R3.
It follows that for all R > 0, there exist ¢ > 0 and k£ € N such that if m > k, then
the component of [/\QnB v (P ﬁ)} NB(R) that passes through 0 is compact and has its
boundary on S?(R). Applying this property to R, = /M, we obtain ¢(n) > 0 and k(n) €
N satisfying that if we let M,, denote the component of BM(p;C(n), ;,(n) ) OBN(pk(n), /Q,/A_;;)

that contains p;f(n), then M, is compact and has its boundary on 0By (pk(n), /\V, ) Clearly,
k(n)

this compactness property remains valid if we increase the value of k(n). Hence, we may
assume without loss of generality that

/\/
t(n)(n+1) < k(n) for all n, An — 0 as n — oo.

/
k(n)

/
n

We now define p,, = pz(n) En = AVL(A”) and A\, = /\;C(n). Then in the case where our

hypothesis (x) holds, it is easy to check that the p,,e,, A, and M, satisfy the first four
conclusions stated in Theorem 11.1 (item 2 in the statement of Theorem 11.1 follows from

1+ k( t)(nl)f(n) <1+ %7 where the

equations (11) and (12) since /\n(lzé)an = /\L(n)(flMﬂMn <

last inequality follows from ¢(n)(n + 1) < k(n)).
Suppose now that the hypothesis (k) fails to hold. It follows, after extracting a subse-

quence, that for some fixed positive number ¢; > 0, the maximum absolute curvature of
the surfaces X/ By (pl,, & A ) diverges to infinity as n — oo.
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Consider M(n) = X, Bas(pl,, 1) to be a subset of R® with p/, = 0, for an increas-
ing sequence t, — oo. After replacing this sequence {t,}, by a sequence that goes to

infinity more slowly, we may assume that M (n) has injectivity radius greater than % at

points of distance greater than % from its boundary. Let p € M (n) be a point such that
BZ\Z/(n) (p,3) C M (n) — &M (n). Note that BZ\Z[(n) (p, 3) is a disk. Letting ¥ = BZ\Z[(n) (p, 3)
in the statement of Theorem 6 in [32], one obtains that there exist § € (0,3) and
Ry > 0 (which we can assume to be less that %), both independent of n, such that if
By (z,R) C ¥ —0% and R < Ry, then the component ¥(x, §R) of XNBy, n(z, I R) passing
through z satisfies X(x,dR) C By(x, %) Furthermore, 3(z, 0 R) is a compact embedded
minimal disk in By, y(x, dR) with 0%(z,0R) C OBy n(z,dR). In particular, letting x = p
and R = %, one has that 3(p, %) is a compact embedded minimal disk in By, n(p, %)
with 03(p, %) C OB N (p, %)

Choose a increasing divergent sequence of positive numbers { R(k)}; and let M (n, R(k))
be the component of M (n) NB(0, R(k)) that contains the origin. The proof of Proposi-
tion 10 in [32] (which is based on the proof of the similar Proposition 3.4 in [2]) shows
that for every k € N, there exists an ny such that for n > ng, then M(n, R(k)) C
M (n) — M (n), and so, M (n, R(k)) has its boundary in OB(0, R(k)). It follows that we
can redefine {R(k)}x to be a increasing sequence with limy_.., R(k) = oo and, for every
keN, OM(k, R(k)) C B(0, R(k)).

Recall that a sequence of embedded compact minimal surfaces ¥, in R? with bound-
aries diverging in space, is uniformly locally simply connnected if there is an € > 0 such
that for any ball of radius € > 0 and for n sufficiently large, that ball intersects ¥, in
simply connected components. By the discussion above (see also Theorem 6 in [34] and
Proposition 1.1 in [2]), the sequence of minimal surfaces M (n, R(n)) can be considered to
be uniformly locally simply connected (the metric balls containing the surfaces are con-
verging to R? with the usual metric). By Colding and Minicozzi [6, 7, 9], after replacing
by a subsequence, {M(n, R(n))}, converges on compact subsets of R? to a possibly sin-
gular minimal lamination £ of R3. In reality, with the local tools developed by Colding
and Minicozzi to study what they call the uniformly locally simply connected case of a
sequence of embedded minimal surfaces with boundaries diverging extrinsically, the lack
of local curvature bounds does not really affect the compactness properties of the sequence
M (n, R(n)).

Let us denote by S the singular set of the lamination (i.e. £ is a regular lamination
of R® — &), and let S(£) C R* — S be the singular set of convergence of M(n, R(n)) to £
(note that the leaves of £ extend through S(L£), but not across S). Let A(L) = SUS(L).

Since the collection of surfaces M (n,t1) have unbounded curvature and are contained
in M(n, R(n)) for R(n) > t1, A(L) is nonempty and contains a point an extrinsic distance
at most ¢; from the origin in R?.
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From Colding and Minicozzi [6, 7, 9], it easily follows that through each point A(L)
there passes a smooth leaf P, of £ which is complete and stable, and so P, is a plane
which we will assume is horizontal. Let

P={P,|zecAL)}

Note that A(L) is a closed set in R? and curvature estimates in [9] for minimal disks imply
that a limit plane P of planes in P passes through A(L), and so, P is in P. Therefore,
the union of the planes in P is a closed subset of R>.

We now check that every plane in £ lies in P and no plane in R? — £ is disjoint from
A(L). Suppose not and let P be such a plane. Since P does intersect A(L), the curvature
estimates of Colding-Minicozzi (the leaves are uniformly locally simply connected) imply
that a fixed size (size is independent of P) regular neighborhood N(P) of the plane is
disjoint from A(L) and £ N N(P) has bounded curvature. From this bounded curvature
hypothesis, a straightforward application of the proof of the Halfspace Theorem or the
proof of Lemma 1.3 in [36] implies that N(P) N £ consists only of planes of £. Let £’ be
the related singular minimal lamination obtained by enlarging £ by adding to it all planes
which are disjoint from it. Note that by curvature estimates in [9], each of these added
on planes is a fixed minimal distance from A(L) and from any nonflat leaf of £. Hence,
the planes of £ which are not in P form a both open and closed subset of R?, but R? is
connected. Hence, this set is empty, which proves our claim.

Since the sequence {M (n, R(n))}, is uniformly locally simply connected, the results
in [9] imply that there exists an n > 0 so that the distance between any two points of
P, NA(L) is a least n for all z € A(L). Using the plane P, as a guide, in the case
x1,29 € P, N A(L) are distinct, one can produce homotopically nontrivial simple closed
curves on the approximating surfaces of lengths converging to twice the distance between
x1 and zo (see for example [29]). Since this curve can be chosen to be a closed geodesic,
our injectivity radius assumption implies that the spacing between x1 and x is at least 1.

Assume now that for some z € A(L), the set P, N A(L) is finite. Let D, be a large
round disk containing the set P, N A(L) in its interior. In a neighborhood of each point
y € P, N A(L) and outside a double vertical cone based at y, there are two multigraphs
contained in the surfaces M (n, R(n)), which, after choosing a subsequence, are always
right or left handed (depending on y). Assign a number n(y) = +1 depending on whether
the multigraphs are right or left handed. Let

I(x) = Z n(y), and for w € A(L), let |I|(w) = Z In(y)].
yEPNA(L) yEPLNA(L)

Note that |I|(w) may have a value of co. If |I(w)| < oo for a given w € A(L), then

I(w) =3 cp,na(c) n(y) makes sense.
We claim that £ is a foliation by horizontal planes. If not, then there is a point
z € A(L) such that P, is not a limit of planes in P at one side of P,; suppose this side is
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the upside. By curvature estimates for minimal disks given in [9], the number of points
in P, NA(L) is a locally constant function of w € A(L). Since |I|(w) and I(w) are
finite locally constant functions near any v € S(L£) with |I|(v) < oo, we can choose z
so that |I|(z) = |I|(z) and I(z) = I(x). If I(z) # 0, then there exist a finite positive
number |I|(z)of multigraphs in £ in the region R, just above P, — D, where D, is defined
similarly to D, (the number of these multigraphs is equal to 2|I|(z) by our discussion in
Subsection 11.2). In this case, the argument used in [9] to produce a limit foliation of R3
by planes gives a contradiction; one shows that the sum of the angular fluxes of V3 of
the multigraphs in £ spiraling into P, — D, is uniformly bounded for any compact range
of angles (this argument is similar to the one we used to treat the type II curve case at
the end of the proof of Proposition 4.3).

Suppose now that I(z) = 0 and L is a leaf of £ which has P, in its limit set. In
this case a simpler flux argument gives a contradiction to the invariance of flux for Vzs.
We now give this flux argument. Without loss of generality, assume z = 0. In this case
A = P, — D, is contained in the (z1,x2)-plane and suppose R, = A x [0, ¢] for some
small € > 0. By the curvature estimates in [9], we may assume that the curvature of the
leaves in R, N L is almost zero. It the follows that each component G of L N R, is a
graph over its projection to A with boundary contained in (0A x [0,e]) U (A x {e}). Let
{G1,Gs,...,Gy, ...} denote the set of the graphical components which each have in their
boundary one of the simple closed curve components {01, 2, ..., 0, ...} on the cylinder
0A x [0,¢]. Here, we may assume that each 0; is a graph over the circle 9A x {0} and that
they are ordered by their relative heights, converging to 0A x {0} as n — co.

Since graphs are proper, each G; is properly embedded in A x [0, €], and so, each G; is
a parabolic surface [11]. Since the inner product of Vg with the outward conormal to G;
along G; N (A x {e}) is nonnegative, then the Algebraic Flux Lemma in [22] implies that
the flux of Vz3 across 9; C 0G| is nonpositive and negative if 0G; N (A x {e}) # O

Since I(z) = 0, then for some k € N, there exist a finite number & of pairs of points p;, ¢;
such that P, N A(L) = {p1,¢1,p2, ¢, - - -, Pk, @} and where n(p;) = —n(g;) for all i,1 <
i < k. Construct a collection {41, ..., dx} of pairwise disjoint simple closed embedded arcs
in P, with the end points of §; equal to p;, ¢; and the interior of each arc ¢; is disjoint from
A(L). It is straightforward to construct related simple closed curves ~;(n) in L consisting
of lifts of §; to adjacent sheets of L over §; joined by short arcs of length ¢; near p; and g;,
which converge with multiplicity 2 to ¢; and £; — 0 as ¢ — oo. (The existence of the short
connecting arcs follows easily from the techniques and results in [23].) Being careful in
choosing the indexing of these curves, we obtain a collection I'; = {~1(4), v2(4), ..., v&(?)},
all at about the same level in the parking garage structure of L near P,, which separates
L. = LN {(z1,72,23) | 0 < 23 < e} and forms the boundary of the subregion L(i) of
L. that contains only a finite number of curves in {d1,...,0;r}. By the Algebraic Flux
Lemma, the flux of Vg across I'; C dL(i) is negative and equal in absolute value to the
flux of Va3 across OL(i) N {x3 = e}. Since for n € N, L(:) C L(i + k), the absolute
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value of the flux of Vg across I'; C 9L(7) is positive and nondecreasing as i — oco. But,
by construction, the integral of |Vz3| along I'; converges to zero as i — oo, which gives
the desired contradiction. This contradiction completes our proof that in the case we are
considering, where some plane P, intersects A(L) in a finite set of points, then £ is the
foliation of R? by horizontal planes.

Now suppose £ is a foliation of R® by planes. By the curvature estimates in [9],
S(L) consists of Lipschitz curves transverse to £ with one passing through each point in
P, NS(L). By the CY'-regularity theorem for S(£) in [26], S(L£) consists of vertical lines
over P, N S(L). The surfaces M(n, R(n)) are now seen to converge on compact subsets
of R? to the limiting minimal parking garage structure of R?® consisting of horizontal
planes and with vertical columns over the points y € P, N S(L) with orientation numbers
n(y) = £1. .

Note that a subsequence of the geodesics loops of length 2 in M (n, R(n)) based at the
origin must converge to a straight line segment of length 1 on the horizontal plane passing
through the origin with end points in S(£). Hence, S(L£) has at least two components
with distance between them equal to 1.

Now assume that for every fixed ¢ > 1, the surfaces M (n,t) have uniformly bounded
genus. We claim that P, N .S(L) consists of exactly two points x1, 2 and these points
satisfy n(z1) = 1 and n(ze) = —1. Note that we have already shown that P, N S(£)
contains at least two points.

Were P, N S(L) to contain more than two points, then two such points z1, zo would
have the same sign: n(x;) = n(xz). Thus, it suffices to prove z; and x5 cannot have the
same sign (when the genus of the surfaces M (n,t) are uniformly bounded for each t).

If the sign of x1 and z9 were the same, then consider an embedded arc 7 in P, — S(£)
joining z1 to xo. It is not difficult to prove that in a small neighborhood N(v) of ~
in R3, the limiting surfaces have unbounded genus. The reason for this is that one can
produce simple closed curves on the approximating surfaces which consist of two lifts of
~ to consecutive levels of the forming parking garage structure joined by short vertical
arcs on the columns over x; and xs. Let 7 denote this associated simple closed curve.
Observe that if 4’ is the related simple closed curve obtained by translating 4 up one level
in the parking garage structure, then 5’ and 5 have intersection number one. Thus, a
small regular neighborhood of ¥ U4’ on the approximating surface has genus one. Since
the limiting minimal parking garage structure is essentially periodic under smaller and
smaller vertical translations, we obtain a contradiction to our bounded genus hypothesis.
In fact, for n large, using the forming parking garage structure and the minimal lamination
metric theorem in [23], the curves 4 and 4’ (and an arbitrary large number of “translated
pairs”) can be shown to lie in M(n,t) for ¢ = 5(|z1| + |x2|). This contradiction proves
our claim that P, N .S(L) consists of exactly two points z1,z9 and these points satisfy
n(x1) =1 and n(z2) = —1.

So far, we have shown that most of the consequences stated in the theorem hold. In
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choosing the required points p/,, we make choices so that hypothesis (x) always holds for
the sequence or always fails to hold. We choose the sequence of points so that the related
surfaces converge to one of the types of limit objects that we are interested in: a properly
embedded surface when (%) holds, or otherwise, a minimal parking garage structure or
a special singular minimal lamination. In the case, that (%) holds we already defined
the required data for p,, €, and M,. If the sequence of surfaces converges to a singular
minimal lamination, then we can define the points p,, to be the new points pl,, A\, = A},
and g, = %:). In the case the surfaces M (n, R(n)) converge to a minimal parking garage
structure, then we can also choose p, to be certain points on the short geodesic loops
based at p!,, which lie a fixed distance at most i from the points p},, and so that the
other special properties in statement 5 of the theorem hold. This completes the proof of

Theorem 11.1.

Remark 11.5 Our techniques used to prove the above theorem have other consequences.
For example, suppose {M,},, is a sequence of compact embedded minimal surfaces with
0 € M,, whose boundaries lie in the boundaries of balls B(R,), where R, — co. Suppose
that there exists some ¢ > 0 such that for any ball B in R?® of radius e, for n sufficiently
large, M,,NB consists of disks (this condition on the sequence of surfaces is called uniformly
locally simply connected following Colding-Minicozzi [9]), and such that for some fixed
compact set C, there exists a d > 0 such that for n large injectivity radius function of M,
is at most d at some point of M;,, N C. Then the proof of Theorem 11.1 shows that, after
replacing by a subsequence, there exists a sequence {R.}, with R/, — oo and R}, < R,
such that if we let M/ denote the component of M, NB(R/,) containing 0, then the M/,
converge on compact subsets of R? to one of the following:

1. A properly embedded nonsimply connected minimal surface M in R®. In this case,
the convergence of the surfaces to M is smooth of multiplicity one on compact sets.

2. A minimal parking garage structure of R® with at least two columns.

3. A singular minimal lamination £ of R® with properties similar to the minimal lami-
nation described in item 6 of Theorem 11.1 (Also see statement 6 of Theorem 12.2.).

12 The structure of singular minimal laminations of R3.

In this section, we shall prove two theorems on the structure of certain possibly singular
minimal laminations of R?, the second one being Theorem 1.3 stated in the Introduction.
In the laminations described in both theorems, the singular set S of the lamination is
countable and the lamination can be expressed as a disjoint union of its possibly singular
minimal leaves (see the last statement of item 6 of Theorem 12.2 and of item 1.3 of
Theorem 1.3).
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Recall from Definition 1.2 that a singular lamination of an open set A C R3 with
singular set S C A is the closure L% of a lamination £ of A — S , such that for each point
pES, then p € ZA, and in any open neighborhood U, C A of p, the closure £ N UpA fails
to give rise to an induced lamination structure. Furthermore, the leaves of the singular

. . —A .
lamination £ are of the following two types.

e If for a given L € L we have I‘ns = @, then L a leaf of .

e If for a given L € £ we have I‘ns # (), then ZA(L) = LUSy is a leaf of ZA, where
Sy, is the set of singular leaf points for L (see Definition 1.2).

We first remark that the singular set S of L% is closed in A. Also note that since £ is
a lamination of A — S, then Li=rus (disjoint union). As a consequence, the closure

L of £ considered to be a subset of R® is £ = £ U S U (OJANL). In contrast to the
behavior of (regular) laminations, it is possible for distinct leaves of a singular lamination

L% of A to intersect. For example, the union of two orthogonal planes in R? is a singular
lamination £ of A = R?® with singular set S being the line of intersection of the planes.
In this example, the above definition yields a related lamination £ of R? — S with four
leaves which are open halfplanes and £ has four leaves which are the associated closed
halfplanes that intersect along S; thus, £ is not the disjoint union of its leaves. However,
in the Colding-Minicozzi Example II in Section 2, the singular lamination £ of the open
ball B consists of three leaves, which are the unit disk and two spiraling nonproper disks,
and so, this singular lamination is the disjoint union of its leaves. In this example, the
singular set S is {0}.

In the first theorem of this section, we will consider the case where the possibly singular
minimal lamination arises as a limit of a sequence of embedded, possibly nonproper,
minimal surfaces in R3, which satisfies the locally positive injectivity radius property
described in the next definition.

Definition 12.1 Consider a closed set W C R? and a sequence of embedded minimal
surfaces { My}, (possibly with boundary) in A =R3 — W. We will say that this sequence
has locally positive injectivity radius in A, if for every q € A, there exists ¢, > 0 and
ng € N such that for n > ng, the restricted functions IMn|BR3(q,eq)mMn are uniformly
bounded away from zero, where Iy, is the injectivity radius function of M,.

By Proposition 1.1 in [2], the property that a sequence {M,}, has locally positive
injectivity radius in the open set A is equivalent to the property that the sequence is
locally simply connected in A, in the sense that around any point in A we can find a ball
B C A centered at the point such that for any n sufficiently large, B intersects M,, in
components which are disks with boundaries on the boundary of B.
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In [27], we will apply the following Theorem 12.2 in an essential way to prove that
for each nonnegative integer g, there exists a bound on the number of ends of a complete
embedded minimal surface in R? with finite topology and genus at most g. This topolog-
ical boundedness result implies that the stability index of a complete embedded minimal
surface of finite index has an upper bound that depends only on its finite genus. In this
application of Theorem 12.2, the set W will be a finite set.

Theorem 12.2 Suppose W is a countable closed subset of R and {M,}, is a sequence
of embedded minimal surfaces (possibly with boundary) in A = R3 — W which has locally
positive injectivity radius in A. Then, after replacing by a subsequence, the sequence of
surfaces { My}, converges on compact subsets of A to a possibly singular minimal lamina-

tion L' = £ U 84 of A (here LT denotes the closure in A of a minimal lamination L of
A— 84, and 84 is the singular set of ZA). Furthermore, the closure L in R of UpecrL
has the structure of a possibly singular minimal lamination of R3, with the singular set S
of L satisfying
ScStuWnL).
Let S(L) C L denote the singular set of convergence of the M, to L. Then:
1. The set P of planar leaves in L forms a closed subset of R3.

2. The set Pum of limit leaves of L is a collection of planes which form a closed subset
of R3.

3. For each point of S(L) U S4, there passes a plane in Pim and each such plane
intersects S(L) UW US4 in a countable closed set.

4. Through each point of p € W satisfying one of the conditions (4.A),(4.B) below,
there passes a plane in P.

(4.A) The area of { M, N Ry}, diverges to infinity for all k large, where Ry is the
ring {x € R | klﬁ <l|lz—p|l <3}

(4.B) The convergence of the M, to some leaf of L having p in its closure is of
multiplicity greater than one.

5. If P is a plane in P — Pum, then there exists 6 > 0 such that for the d-neighborhood
P(5) of P, one has P(6)N L = {P}.

6. Suppose that there exists a leaf L of L which is not contained in P. Then the
convergence of portions of the M, to L is of multiplicity one, and one of the following
two possibilities holds:

(6.1) L is proper in R3, P = 0, LN (SAUS(L)) = 0 and L = {L}.
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(6.2) L is not proper in R3, P # @ and LN (SAU S(L)) = @. In this case, there
exists a subcollection P(L) C P consisting of one or two planes in P such that
L =LUP(L), and L is proper in one of the components of R® — P(L).
In particular, L is the disjoint union of its leaves, each of which is a plane or a
minimal surface, possibly with singularities in W, which is properly embedded
(not necessarily complete) in an open halfspace or open slab of R3.

7. Suppose that the surfaces M, have uniformly bounded genus. If SUS(L) # @, then
L contains a nonempty foliation F of a slab of R? by planes and @ﬂ F consists
of 1 or 2 straight line segments orthogonal to these planes, intersecting every plane
in F. Furthermore, if there are 2 different line segments in mﬂ F, then in the
related limiting minimal parking garage structure of the slab, the limiting multigraphs
along the 2 columns are oppositely oriented. If the surfaces M, are compact, then

L = F is a foliation of all of R by planes and S(L) consists of complete lines.

Remark 12.3 In statement 7 of the above theorem, we refer to the “related limiting
minimal parking garage structure of the slab” which has not really been defined precisely
because the sequence of the surfaces { M, },, only converges to a minimal lamination £ in
R3 — W, rather than to a minimal lamination of R®. If F is a union of planar leaves of £
which forms an open slab, then F NS = @ and for n large, M, N K has the appearance
of a parking garage structure away from the small set W N S(£). In spite of this problem
that arises from W, we feel that our language here appropriately describes the behavior of
the limiting configuration. We also remark that there exist examples of sequences {M,},
of nonproper embedded minimal disks in {x3 > 0}, which have locally positive injectivity
radius, where W = {0} and such that Z is a foliation of a halfspace of R® with singular
set of convergence S(L) being the positive x3-axis. For example, to obtain this case one
just lets M,, = nL, where L is one of the nonproper leaves in Example II in Section 2,
S(L) is the nonnegative zsg-axis and S = 0. The reason for this is that the sequence D,
of compact minimal disks given in Example II converge to a singular minimal lamination
L4 of the ball. By Colding-Minicozzi [9], there exists a sequence \,, — oo such that A\, D,
converges to the foliation F of R by horizontal planes with singular set of convergences
S(F) the w3-axis. Thus, we see that £ = F N {z3 > 0} and S(L) = S(F) N {z3 > 0},
which equals the positive x3-axis.

Proof. We will first produce the possibly singular limit lamination £ If the M, have
uniformly locally bounded curvature in A, then it is a standard fact that subsequence of the
M, converges to a minimal lamination £ of A with empty singular set and empty singular
set of convergence (see for instance the arguments in the proof of Lemma 1.1 in [36]).
In this case, ZA = £ and S4 = @. Otherwise, there exists a point p € A such that,
after replacing by a subsequence, the supremum of the absolute curvature of B(p, %) NM,
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diverges to 0o as n — oo, for any k. Since the sequence of surfaces {B(p, %)ﬂMn}n is locally
simply connected in R?, Proposition 1.1 in [2] implies that for k and n large, B(p, %) N M,
consists of disks with boundary in 9B(p, %) By Colding-Minicozzi theory, for some kg
sufficiently large, a subsequence of the surfaces {B(p, ,%O) N M, },, (denoted with the same
indexes n) converges to a possibly singular minimal lamination £, of B(p, ,%O) with singular
set S, C B(p, kio), and £, C B(p, %O) C S, contains a stable minimal punctured disk D,
which is contained in the limit set of £, and with 0D, C 9B(p, k%) and D, NS, = {p};
furthermore, D,, extends to the stable embedded minimal disk D, in B(p, kio), which is a
leaf of £,. By the curvature estimates in [9], there is a solid double cone in B(p, ,%O) with
axis passing through p and orthogonal to D, at that point, that intersects D, only at the
point p and such that the complement of this solid cone in B(p, ,%O) does not intersect S,.
Also, Colding-Minicozzi theory implies that for n large, B(p, ,%O) N M, has the appearance
of a highly-sheeted double multigraph around D,,.

A standard diagonal argument implies, after replacing by a subsequence, that the
sequence {M,}, converges to a possibly singular minimal lamination LY =rUsAof A
with singular set S4 ¢ A. Furthermore, the above arguments imply that in a neighborhood
of every point p € S84, L% has the appearance of the singular minimal lamination £,
described in the previous paragraph.

Once we have found ZA, we consider the possibly singular lamination £ = £ US of
R?, whose singular set is the disjoint union

S=84U{peWnZL | L does not admit locally a lamination structure around p}.

It remains to prove the items 1,...,7 in the statement of the theorem. Since the limit of
a convergent sequence of planes is a plane, the set P of planes in £ forms a closed set in
R3. This proves that statement 1 of the theorem holds.

From the local Colding-Minicozzi picture of L% near a point of 4, each limit leaf L
of £ is seen to be stable and to extend smoothly across S? to a stable minimal surface L;.
Since L is smooth and complete outside the closed countable set W in R3, Corollary 5.3
implies that the closure of Lq in R3 is a plane. Thus, the set Py, of limit leaves of £ is a
collection of planes. Since the set of limit leaves of £ in P forms a closed set in R3, the
set of these planes forms a closed set in R®. This proves that statement 2 of the theorem
holds.

Again the Colding-Minicozzi local picture implies that through each point of S(£)US4
there passes such a limit leaf of £ and which, by statmement 2 of the theorem, must be
a plane in Pjy,. Suppose now that P € Py, intersects S(L) at some point, and we will
prove that P N (S(L£)UW US4) is a countable closed set. By the local simply connected
property of the sequence {M,},, we have that (S(£)US?) N (P —W) is a closed discrete
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subset of P — W, with limit points in P only in the countable closed set PNW. It follows
that PN (S(L)UW US4) is a closed countable set of R®. This proves statement 3.

Suppose that p € W satisfies the area hypothesis in statement (4.A) in the theorem.
Then it follows that either p is in the closure of a limit leaf of £ (which must be a plane by
item 2 and so, there passes a plane in P through p), or else condition (4.B) in the theorem
holds, i.e. there exists a leaf ¥ of £ having p in its closure, such that the multiplicity
of the convergence of portions of the M,, to X around p is greater than one. This last
property implies the universal cover of ¥ is stable, and that universal cover of the leaf
of £ that contains ¥ is stable as well. Again by the arguments above, an application of
Corollary 5.3 proves that the closure of ¥ in R? is a plane, thereby proving statement /
of the theorem.

In order to prove statement 5, suppose now that P is a plane in P — Pjj,. Since
Plim is a closed set of planes, we can choose § > 0 such that the 26-neighborhood of P
is disjoint from Pl,. By statement 3, through every point in S(£) U S4, there passes a
plane in Pjiy. It follows that S(L£) U S4 is a positive distance from P. Now suppose that
the intersection of £ with any closed ball B(p, §) centered at a point p € P has infinite
area. Then a similar argument as in the last paragraph shows that we find a plane in
Plim that intersects B(p, §), which is impossible. It follows that the intersection of £ with
every closed ball B(p, §) centered at a point p € P has finite area for some fixed positive
sufficiently small 0. If the §-neighborhood P(§) of P intersects £ in a portion L’ of leaf
different from P, then such a leaf, while it may have singularities in W, is proper in P(9)
(by the finite area property inside balls B(p,d)). We now check that L’ is disjoint from
P. Otherwise, there is an isolated point w € L' N P C W. Choose and r > 0, r < §, such
that the circle S, C P of radius r centered at p is a positive distance from W, and hence,
a positive distance 2¢ from L’. Using L’ as a barrier, we see that the circle S,.(g) of height
e over S, together with the circle S,» C P of radius ' < r bound a stable catenoid C(r’),
which is impossible for v’ sufficiently small. Hence, L’ does not intersect P. A standard
application of the proof of the Halfspace Theorem using catenoid barriers still works in
this setting to obtain a contradiction to the existence of L’. Hence, P(§) N L = P, which
proves statement 5.

Suppose now that L is a leaf of £ that is not a plane in P. If L is proper in R?, then
the proof of the Halfspace Theorem implies P = (. To finish statement (6.1), it remains
to prove that £ = {L} (which in turn by statement 3 implies S(£)US4 = ©@). Otherwise,
L contain a leaf Ly # L, and L; is not flat since P = . Furthermore, L; is proper in
R? (because L would contain a limit leaf which is a plane in P), so the surfaces L, L;
contradict the Strong Halfspace Theorem (or rather its proof that holds in this setting
and which allows one to construct a least-area surface which is a plane between L and
L1). This proves statement (6.1). Now assume L is not properly embedded in R3. Thus,
there exists a limit point ¢ of L not contained in L. We claim that there is a plane P € P
passing through ¢, which holds by statement 2if ¢ € S(£) US#. To prove the claim, first
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suppose ¢ € A. In this case, the locally simply connected hypothesis of { M, }, around ¢
implies that ¢ lies on a limit leaf of £, and subsequently, it lies in a limit leaf of £, which
in turns must be a plane by statement 2. Finally, suppose that ¢ € S —S4. In particular,
qg € W. Reasoning by contradiction, if there is no plane of P passing through ¢, then
statement 4 implies that some small closed ball B(q, €) intersects £ in a compact possibly
singular minimal surface of finite area. This is impossible, since ¢ is a limit of a divergent
sequence of points in the leaf L and ¢ ¢ L. This proves our claim. Since through any limit
point of L there passes a plane in P, a straightforward connectedness argument shows
that L = L UP(L) with P(L) consisting of at most two planes. In particular, L must be
proper in the component C(L) of R* — P(L) that contains L, and (6.2) is also proved.

In order to prove item 7, suppose from now on that the surfaces M, have uniformly
bounded genus and S U S(L) # .

Assertion 12.4 Through every point p € SU S(L), there passes a plane of P (in partic-
ular, P # 0).

Proof of Assertion 12.4. Fix a point p € S U S(L). We will discuss three possibilities
for p.

e ASSUME p € S(L)U SA4. 1In this case, item & implies that there exists a plane
P € Pym C P passing through p.

e ASSUME p IS AN ISOLATED POINT OF S N W. Arguing by contradiction, suppose
no plane of P passes through p. By statement 4, neither of the conditions (4.A4),
(4.B) hold. Since (4.A) does not occur, we may assume that there is a small closed
neighborhood B(p, ) such that £ N B(p,e) contains a finite number of compact
smooth surfaces with boundary on dB(p,e) and a finite number of noncompact
properly embedded minimal surfaces {¥1,...,%,,} in B(p,e) — {p}. (Otherwise,
there would be a limit leaf of LN (B(p,e) — {p}), contradicting (4.A4.).)

The following argument shows that there is exactly one such noncompact surface (i.e.
m = 1) and that this surface ¥; has just one end. Suppose m > 1 and let {3(k)}
be a compact exhaustion of 3o with 0¥y C X (k) for all k. Let C' be the closure
of the component of B(p, ) — (X1 U ¥2) that intersects both ¥, X5 in its boundary
and let $(k) be a surface of least-area in C' with boundary 8% (k). A subsequence
of these least-area surfaces i(k‘) converges to a properly embedded stable minimal
surface $(o00) C B(p,e) — {p} with boundary 9%(c0) = 9%, and (o) is disjoint
from ¥; (by the interior maximum principle). Replacing Yo by i(oo) and then
repeating the argument using a compact exhaustion of ¥; in place of one of Yo,
we produce another noncompact properly embedded stable minimal surface Y/(00)
in B(p,e) — {p} with 9%'(c0) = ¥ and which is disjoint from X(c0). By the local
removable singularity theorem (Theorem 1.4), these stable minimal surfaces extend
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smoothly across p, thereby contradicting the maximum principle applied at their
intersection point p.

The above connectedness argument applied at smaller choices of ¢ also shows that
Y1 has one end. Since the surfaces M,, have uniformly bounded genus and converge
with multiplicity one to 37 (this last property follows from the fact that (4.B) does
not occur at p), then 3; has finite genus. In particular, 3; has an annular end.
By similar arguments as those in point 1 of the proof of Theorem 5.1, the minimal
surface Y1 extends smoothly across p, contradicting that p € S.

e ASSUME THAT p € SNW IS NOT AN ISOLATED POINT. Since S N W is a countable
closed set of R?, p must be a limit of isolated points p € SN W, so our assertion
holds in this case by taking limits of planes occuring in the preceding point.

This finishes the proof of Assertion 12.4.
Assertion 12.5 £ =P.

Proof of Assertion 12.5. Arguing by contradiction, assume £ # P. Since SUS(L) # @,
Assertion 12.4 implies P # @. Then choose a leaf L of £ in £ — P and note that item 6
in the theorem implies L is proper in the open region R® — P(L). Here, P(L) consists of
one or two planes. Since the convergence of portions of the M, to L has multiplicity one,
then L has finite genus at most equal to the uniform bound on the genus of the surfaces
in {M,},. Also, note that by Assertion 12.4, L U P(L) is a possibly singular minimal
lamination of R? (it is a sublamination of £) with singular set contained in SNP(L). By
item 6 of the theorem, SNP(L) is a countable closed set of R3. Ttem 7in the statement of
Theorem 1.3 in the Introduction states that the finite genus leaf L must be the only leaf
of the possibly singular minimal lamination L U P(L) but P(L) # . This contradiction
finishes the proof of the Assertion 12.5.

We now finish the proof of Theorem 12.2. Since £ = P, then S = . Since by
hypothesis S U S(L) # O, it follows that S(L£) # . Also note that the arguments at
the end of the proof of Theorem 11.1 show that for a plane P in P, P N S(L) cannot
contain more than two points and if PN (S(L£)US*) contains exactly two points, then the
corresponding forming double multigraph in the M,, around these points are oppositely
oriented (otherwise, for n large in a fixed size ball containing these points, the surfaces
M,, have unbounded genus). By the curvature estimates in [9] and the earlier described
local picture of £ near a point p € S(L), one obtains the required sublamination F in
L = P (which in fact is a foliation of a closed slab or halfspace of R by planes), with
one or two transverse Lipschitz curves in S(L). Meeks’ regularity theorem [26] implies
that S(L) consists of straight line segments orthogonal to F, and so, there is a related
limiting minimal parking garage structure of F, and we will have shown that the first two
statements of item 7 hold. The proof of the last statement (assuming compactness for
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the surfaces M,,) is also standard once one has £ = P. This completes the proof of the
theorem. O

We will finish this section by proving Theorem 1.3 stated in the Introduction.

Proof of Theorem 1.3.

Let £ = £LUS be a possibly singular minimal lamination of R® with a countable
closed singular set S. The set of planes P in £ clearly forms a closed set of R? and the
set of limit leaves Pym of £ are planes, since if L is a limit leaf of £, then its universal
cover is stable and extends across S to be a complete stable minimal surface (the local
removable singularity theorem). Since the set of limit leaves of a minimal lamination forms
a closed set, then Py, represents a closed set of R®. These observations prove the first two
statements in Theorem 1.3. Statement & follows from the arguments we used in the proof
of the similar statement 5 of Theorem 12.2. Statement 4 follows with little modification
from the arguments given in the proof of Assertion 12.4.

Assume now that L is a nonplanar leaf of £. The arguments in the proof of statement
4 of Theorem 12.2 apply to prove statement 5.

We now begin the rather long proof of statement 6. Recall the hypothesis of this
statement is that the nonplanar leaf L of £ is not the only leaf of L. If S = @, then
statement 6 would follow from the statements of Theorem 1.6 in [36] and from Theorem
? in [29], which states that a nonflat finite genus leaf of a minimal lamination of R? is
a properly embedded minimal surface and the only leaf of the lamination. We will need
to check that the proofs presented in these papers can be generalized to the case where
S # O and countable. This verification will be more difficult here but it is still possible
to carry out because the main tool in these proofs is to produce via barrier constructions
complete properly embedded stable minimal surfaces which are planes in the complement
of a given leaf; in our case, we can similarly construct properly embedded stable minimal
surfaces (not necessarily complete) which by Theorem 1.4 can be extended through S to
complete stable minimal surfaces which are planes.

Since £ # {L}, statement 5 and the connectedness of L imply that L is properly
embedded in a component C(L) of R3 — P(L). Clearly, there are no planar leaves of £ in
C(L) by the proof of the Halfspace Theorem. If L’ is a nonflat leaf of £ that is different
from L and which intersects C(L), then if a plane in P(L’) intersects C(L), then this
plane must be a plane in P(L). Since a similar statement holds with the roles of L and L’
reversed, then one sees that C(L) = C(L') and P(L) = P(L’). Hence, L and L’ are both
properly embedded in the simply connected region C(L), and so, bound a region X in
C(L); we consider X to be a relatively closed domain in C(L) with boundary LUL’. Since
the two boundary components of X are good barriers for solving Plateau problems in X
(in spite of being singular), a now standard argument (see, [37]) shows that there exists
a properly embedded least-area surface ¥ in X that separates L C X from L' C 0X.
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However, since X is not necessarily complete, the surface ¥ is not necessarily complete.
On the other hand, it is clear that when considered to be a surface in R3, ¥ is complete
outside of the set SNP (L), which is a countable closed set. Hence, by our local removable
singularity theorem, ¥ extends to be a complete stable minimal surface & in R?. Since ¥ is
a plane, clearly ¥ = X is also a plane which is impossible. This proves the first statement
in item 6 of the theorem. In a similar way, applying the proof of Theorem 1.6 in [36] and
using the local extendability of a stable minimal surface in C'(L) which is complete outside
of SNP(L) and has its boundary in a plane in C(L), one sees that P(e) intersects L in a
connected set.

It remains to prove that the connected surface L. = (L — S) N P(e) has infinite genus.
If this property were to fail, then we can first choose € sufficiently small so that L. has
genus zero. It then follows from statement / that L(e) is a smooth surface with boundary
on a plane P. C C(L). In [29], we considered a related easier situation where L is a leaf
of finite genus in a nonsingular minimal lamination of R? with more than one leaf. In
that paper, we obtained a contradiction to the existence of such a minimal lamination
by applying a variant of the Lopez-Ros argument; the original argument was first used
to prove that the catenoid and plane are the only complete embedded minimal surfaces
in R? with genus zero and finite topology. We will not apply the Lopez-Ros argument
here to obtain a contradiction to the existence of L., but rather, we will apply several key
theoretical results and arguments that we have obtained in earlier sections of the present
paper.

Let I, be the injectivity radius function of L. We first consider the special case where I,
decays faster than linearly in terms of the distance to the plane L. By the proof of the local
picture on the scale of topology theorem, there exists a sequence {p,}, of blow-up points
on the scale of topology such that lim,,_.. dg3s(pn, P) = 0. By this local picture theorem,
for n large, we may assume that there exists a small ball B(py, ,), 0 < &, < dgs(pn, P),
such that the component of L. N B(p,,s,) containing p,, is compact, has its boundary in
OB(pn,cn) and has the appearance, under scaling, to either a properly embedded genus
zero minimal surface in R? or to a parking garage structure with two oppositely oriented
columns. In particular, there exists a sequence of simple closed geodesics I';, C L. near p,
such that the lengths L,, = length(~,,) are converging to zero.

Our previous arguments imply that «,, is the boundary of an area-minimizing noncom-
pact orientable minimal surface ¥, in the closure of the component of P(e) — (P. U L)
which contains the plane P. in its boundary. The surfaces ¥,, are complete in R? outside
of the set P N'S. Since the X,, are stable, each extends to a complete orientable stable
minimal surface ¥,, with boundary +,. By the maximum principle for harmonic functions,
Y, NP =@, and so ¥, is seen to be complete already. Since each complete stable ori-
entable ¥, has finite total curvature [12] and is contained in a slab, it has planar ends.
By the maximum principle at infinity [33], there is a plane T}, asymptotic to an end of ¥,
which intersects X, in a compact analytic set containing some point of 7,. Elementary
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separation arguments, using the fact that L. is a planar domain and the fact that the
slab between T,, and P intersects L. in a connected set, imply that near P every plane
in P(e) intersects L. transversely in a simple closed curve. It follows from [11] that P(e)
has one limit end and, after choosing a possibly smaller ¢, L. is a simple closed curve
and the simple ends of L. are planes. By Theorem 1 in [30] which describes the geometry
of properly embedded minimal surfaces of finite genus in R?, each of the short geodesics
vn can be taken to represent the homotopy class of a plane intersection with L.. By the
divergence theorem, the nonzero flux of the gradient of the distance function on L. to P
across the curve 7, is independent of n. Since these fluxes are no greater than the lengths
L,, = length(y,), which are converging to zero as n — oo, we obtain a contradiction.
Hence, we may assume that there is a constant C' > 0 such that I;, > Cdgs(-, P) in P(e).

We next check that £, = L. U P is a minimal lamination of P(¢). Arguing by contra-
diction, assume that £, has singularities. Since the set of these singularities is a countable
closed set in P, we may assume that z € P is an isolated singularity for £.. After a rigid
motion, we may assume that P is the (z1,x2)-plane, z = 0 and L. lies above P. Since
L. does not extend across {0}, the local removable singularity theorem implies that there
exists a sequence of points {p,}n C L. converging to 0 with |K1|(p,)|p.| > n. Consider
the sequence of related minimal surfaces M,, = ﬁLE and note that by letting W = {6},
these surfaces satisfy the hypothesis of Theorem 12.2. Since these surfaces have genus
zero, a subsequence converges to a minimal lamination A of R3. Since the curvatures of
these surfaces are unbounded on the unit sphere S?, then the singular set of convergence
S(A) is nonempty.

Since 0 is an isolated singularity of A, the linear decay estimate on the injectivity
radius implies that S(A) N'S? lies above a vertical cone based at 0. Let y € S(A)NS?
and let P, be the horizontal plane in A passing through y. Since the surfaces M, are
planar domains and uniformly simply connected in a fixed size neighborhood of P, the
arguments near the end of the proof of the local picture scale of topology theorem imply
that £ is a foliation of planes of the closed upper halfspace H of R? with one or two lines
in S(A), each of whose closure intersects S(A) N P = {0} in a single point. Hence, S(A)
contains a single line which is the positive z3-axis.

Since L. is proper in the half-open slab P x (0, €], the above argument implies that for
given k isolated points {p1, pa, ..., px+ C S(L.) C P, there exists disjoint disks D(py, ) C
P such that the 0D(pg, ) x (0, €] intersects L. in two spiraling curves that limit to the
circle 0D (p,er) x {0}. Straightforward modifications of the topological and flux-type
arguments near the end of the proof of the local picture on the scale of topology show
that there must exist exactly two singular points of S(£.) and connecting loops 7, which
have constant nonzero Vzg flux (between v, and 7, + 1 is a proper domain in L. with a
finite number of horizontal planar ends). As n — oo, these loops are becoming almost-
horizontal with uniformly bounded length, and so, their Vz3 fluxes must converge to
zero. This contradiction proves that I, restricted to L. cannot decay at most linearly as

70



a function of the distance to P. This completes the proof of statement 6. Statement 7
follows immediately from statements 5§ and 6. The theorem now follows. O
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