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1 Introduction.

We will give simple elementary proofs of the following well-known fundamental
results in classical minimal surface theory. The last of these theorems, Theorem
6, is new.

Theorem 1 (Osserman [9], Chern and Osserman [1]). Suppose Σ is a complete
connected oriented minimal surface in Rn with finite total Gaussian curvature
C(Σ) =

∫
Σ

KdA. Then:

1. C(Σ) is an integer multiple of 2π;

2. C(Σ) is an integer multiple of 4π if n = 3;

3. Σ has finite conformal type, which means Σ is conformally diffeomorphic
to a closed Riemann surface Σ punctured in a finite number of points;

4. If n = 3, then the Gauss map G : Σ → S2 extends to a holomorphic
function G : Σ → S2;

5. Let ω1, ω2, . . . , ωn be the holomorphic forms on Σ with ωk = dxk + i ∗
dxk where dxk is the differential of the k-th coordinate function of Σ and
where ∗ is the Hodge star operator on harmonic one-forms. Then the
holomorphic forms ω1, . . . , ωn extend to meromorphic one-forms on Σ;

∗This material is based upon work by the NSF under Award No. DMS - 0405836. Any

opinions, findings, and conclusions or recommendations expressed in this publication are those

of the authors and do not necessarily reflect the views of the NSF.

1



6. The meromorphic Gauss map G : Σ → CPn−1 defined in local coordinates
z of Σ and homogeneous coordinates of CPn−1 by (f1(z), . . . , fn(z)), where
ωk = fk(z)dz, extends to a meromorphic function G : Σ → CPn−1.

Theorem 2 (Colding and Minicozzi [2] and Pogorelov [11]). If D ⊂ Σ is an
embedded stable minimal disk of geodesic radius r0 on a minimal surface Σ ⊂ R3,
then

πr2
0 ≤ Area(D) ≤ 4

3
πr2

0 .

Theorem 3 (do Carmo and Peng [3], Fisher-Colbrie and Schoen [5] and Pogorelov
[11]). The plane is the only complete stable orientable minimally immersed sur-
face in R3.

Theorem 4 (Schoen [13]). There exists a constant c > 0 such that for any
stable orientable minimally immersed surface Σ in R3 and any point p in Σ
of intrinsic distance d(p) from the boundary of Σ, then the absolute Gaussian
curvature of Σ at p is less than c

(d(p))2 .

Theorem 5 (Fischer-Colerie [4]). If Σ is a complete orientable minimal surface
in R3 with compact (possibly empty) boundary, then Σ has finite index of stability
if and only if Σ has finite total curvature.

Theorem 6. If Σ is a complete minimal surface in Rn, then every homotopically
nontrivial loop on Σ is homotopic to a unique closed geodesic which is a closed
curve of least length in the homotopy class of the loop. Furthermore, if Σ is
orientable and the free homotopy class of the loop is representable by a simple
closed curve, then the geodesic representing the loop is a simple closed geodesic.

The following is an immediate consequence of Theorem 6.

Corollary 7. If Σ is a connected complete orientable minimal surface in Rk

with χ(Σ) ≤ −n, for some n ∈ N, then there exists a compact surface Σ ⊂ Σ
bounded by embedded geodesics and such that χ(Σ) = −n. In particular, by the
Gauss-Bonnet formula applied to Σ, the total absolute curvature of Σ is greater
than 2π|χ(Σ)| = 2πn. Furthermore, if χ(Σ) = −n, then Σ is diffeomorphic to
the interior of Σ.

As part of the proof of Theorem 6, we give a new proof of a theorem of
Freedman, Hass, and Scott [6] that states that a least-length closed geodesic
on an orientable Riemannian surface, which is disjoint from the boundary of
the surface and homotopic to a simple closed curve, is a simple closed geodesic.
This result is Theorem 11 and appears in Section 2.

Our proofs of the above theorems will use only the simplest results from
standard elliptic theory and Riemannian geometry. We will not assume Hu-
ber’s Theorem on the conformal type of complete Riemannian surfaces of finite
total curvature or Picard’s Theorem but we will assume the Gauss-Bonnet for-
mula, the uniformization theorem, the monotonicity of area formula for minimal
surfaces, the second variation of area formula for compact orientable minimal
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surfaces in R3 and elementary covering space theory. We will prove Theorem
1, Theorem 6 and Theorem 11 in Section 2; the remainder of the theorems are
proved in Section 3.

2 The proof of Theorem 1.

In this section we will give an elementary proof of Theorem 1. For the sake
of concreteness and simplicity we will first carry out the proof in the classical
setting where Σ is a complete orientable minimal surface of finite total curvature
in R3. At the end of this section we will explain how to modify the proofs to
the n-dimensional setting. Our proofs will use the fact that the Gauss map
G : M → S2 of an oriented non-totally geodesic surface M in R3 is a conformal
branched map, with the orientation on S2 given by stereographic projection to
C ∪ {∞}, precisely when M is a nonflat minimal surface.

Our proof of Theorem 1 depends on the following technical result.

Theorem 8. Suppose f : M → R3 is a compact minimal surface and d : M →
[0,∞) is the distance function to the boundary of M . Given positive numbers
d0 and ε, there exists a positive number η(ε, d0) < π

2 , such that if p ∈ Int(M)
with d(p) ≥ d0 and |K(p)| ≥ ε, then the unoriented Gaussian image G(M) ⊂ P2

contains a geodesic disk (spherical cap) of radius η(ε, d).

Corollary 9 (Curvature Estimate). If f : M → R3 is a compact minimal
surface with total curvature less than the area of a spherical (geodesic) disk
of radius η(ε, 1) and p ∈ Int(M), then the absolute Gaussian curvature at p

satisfies |K(p)| ≤ ε
d2(p) , where d(p) is the distance of p to ∂M .

Proof. If the theorem were to fail for some positive ε and d0, then there would
exist a sequence of compact minimal surfaces M(n) with points p(n) ∈ M with
d(p(n)) ≥ d0, |K(p(n))| ≥ ε and such that G(M(n)) ⊂ P2 does not contain a
spherical cap of radius 1

n
.

Consider the functional d2|K| : M(n) → [0,∞) and let q(n) ∈ M(n) be
a point where d2|K| obtains its maximum value. Since Gauss map of M(n)
and the functional d2|K| : M(n) → [0,∞) are both invariant under homoth-
etic scaling, then, after translating M(n) by −q(n) and scaling by the factor√

1
ε
|K|(q(n)), we obtain a new surface M̃(n) with related point q̃(n) at the

origin in R3 and, by our choice of q(n), we have |K(q̃(n))| = ε, d(q̃(n)) =

dist (q̃(n), ∂M̃(n)) ≥ d0, for n large and the Gaussian image of M̃(n) does not
contain a spherical cap of radius 1

n
.

For r, 0 ≤ r ≤ d0, let M̃(n, r) = {p ∈ M̃(n) | dist(p, q̃(n)) ≤ r}. By our

choice of q(n), the surface M̃(n, d0

2 ) has absolute Gaussian curvature bounded

by 4ε. Since M̃(n, d0

2 ) is a minimal surface, the principal curvatures are bounded

in absolute value by
√

4ε. It follows that there exists a small α, 0 < α < d0

2 ,

independent of n, such that M̃(n, α) is a graph over a convex domain in the

tangent space Teq(n)M̃(n, α) with gradient less than one. Thus, after rotating
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M̃(n, α), the tangent space Teq(n)M̃(n, α) is the x1x2-plane R2. Let M̂(n) denote

the portion of M̃(n, α) which is a graph over the open disk D( α√
2
) centered at

the origin in R2 of radius α√
2
. By standard elliptic theory, a subsequence of

the M̂(n) converges to a minimal graph H over D( α√
2
) and the convergence of

the graphing functions is smooth in the C∞-norm on the disk D(α
2 ). Since the

convergence is smooth on D(α
2 ) and each of the surfaces M̃(n, α) has absolute

Gaussian curvature ε at the origin, the similar property holds for H at the
origin.

The absolute Gaussian curvature of H is at least ε
2 at every point in some

small β, 0 < β < α
2 , neighborhood of the origin, and so, for n large, M̃(n, β) has

at every point absolute Gaussian curvature at least ε
3 . Since G is conformal, it

follows that for n large that there exists a neighborhood of the origin in M̃(n, β)
which under G goes diffeomorphically to the spherical cap in P

2 of radius β
√

ε
3

around the value of the Gauss map of M̃(n, β) at the origin q̃(n). This property
contradicts our initial assumption that the Gaussian image of M(n) contains no
spherical cap of radius 1

n
, which completes the proof of the theorem.

Remark 10. We note that versions of Theorem 8 and Corollary 9 hold in the n-
dimensional setting with slight modifications and with the constants η(n, ε, d0)
depending on n. Theorem 8 for f : M → Rn in this case states that there is
a ball B of radius η(n, ε, d0) in CPn such that there is a disk component D of
G−1(B) such that G(D) is a disk in B passing through the center of B and
with G(∂D) ⊂ ∂B and G|D is an injective holomorphic immersion. In fact,
by following the proof of Theorem 8, for fixed n, ε, and d0, one can also bound
uniformly the geometry of the holomorphic disk G(D).

The next step in the proof of Theorem 1 is to prove Theorem 6.
Proof of Theorem 6. Let f : Σ → Rn be a complete orientable minimal

surface and γ : S1 → Σ be a homotopically nontrivial loop on Σ. Let π : Σ̃ → Σ
be the covering space corresponding to the infinite cyclic subgroup of π1(Σ)

generated by γ. Let π̂ : Σ̂ → Σ̃ be the universal cover of Σ̃ and σ : Σ̂ → Σ̂ be
the covering transformation corresponding to the lift γ̃ ⊂ Σ̃ of γ, which we can
consider to be an element of the fundamental group of Σ̃.

We first check that for every p ∈ Σ̃ there exists a unique embedded unit
speed geodesic γ(p), beginning and ending at p, which represents the generator

of π1(Σ̃, p) = Z. Let p̃ be a lift of p to Σ̂. There exists a least length geodesic

γ̂(p) in Σ̂ joining p̃ and σ(p̃). It follows that γ(p) = π(γ̂(p)) is the desired closed
geodesic and γ(p) has least length in its homotopy class (and passing through
p).

We now check that γ(p) : [0, L] → Σ̃ is an injective unit speed parametriza-
tion of γ(p) (except that γ(p)(0) = γ(p)(L)). Arguing by contradiction, suppose
γ(p) is not injective. In this case there is a compact subdomain [a, b] ⊂ [0, L)

such that γ(p)(a) = γ(b) and α = γ(p)([a, b]) is an embedded loop in Σ̃. Since
γ(p) minimizes length in its homotopy class, clearly α is homotopically nontriv-

ial. Since Σ̂ is an annulus and α is embedded, α generates the fundamental group
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of Σ̃ and so α is freely homotopic to ±γ(p) on Σ̃. After orienting α appropriately
so that it is freely homotopic to γ(p), we can produce two loops γ1(p), γ2(p), that

represent γ(p) ∈ π1(Σ̂, p) by joining α to p via the arcs γ(p)|[0, a], γ(p)|[b, L],
respectively. For example, if β = γ(p)|[0, a], then γ1(p) = βαβ−1. Without loss
of generality, we may assume that the length of γ(p)|[0, a] is less than or equal

to the length of γ(p)|[b, L]. It follows that γ1(p) ∈ π1(Σ̃, p) also has least length
in the homotopy class of α(p) but γ1(p) is not a geodesic (it has a corner at
γ1(p)(a)), which gives the desired contradiction. Hence, γ(p) is an embedded
geodesic.

We now check that as p varies in Σ̃, the length function L(γ(p)) attains
a minimum value at some point p0. Otherwise, there would exist a divergent
sequence of points p(n) ∈ Σ̃ such that L(γ(p(n))) is bounded by L(γ(p1)) where

one fixes p1 ∈ Σ̃ arbitrarily. Since the lengths of the γ(p(n)) are uniformly
bounded, after possibly choosing a subsequence, we may assume that γ(p1) is
disjoint from γ(p(n)).

We now check that the injectivity radius of Σ̃ is bounded away from zero.
Suppose otherwise, and let α(n) be a divergent sequence of embedded geodesic

loops with lengths going to zero as n →∞. Since Σ̃ has nonnegative Gaussian
curvature, the α(n) cannot bound disks in Σ̃. Elementary surface theory implies

that the α(n) are homotopic on Σ̃ and, after choosing a subsequence, α(1)∪α(n)

bounds an annulus A(n) on Σ̃(n) and A =
⋃∞

n=1 A(n) is an annular end of Σ̃.
By the convex hull property, the α(n) have at most one limit point in Rn. By
the isoperimetric inequality, A has finite area. The monotonicity formula for
area and the finiteness of area implies that A has a unique limiting point in
Rn which means that the map of A into Rn extends to a continuous function
on the disk obtained from A by attaching its end. The uniformization theorem
together with the Schwartz reflection principle implies that A is conformally a
punctured disk. Since the coordinate functions of A are bounded, the inclusion
of A into Rn extends smoothly across the puncture point, which contradicts
that A is complete. A slight modification of these arguments using γ(p(n))
in place of α(n) proves that every sequence of geodesics γ(p(n)) with length
at most L(γ(p1)) has a convergent subsequence to some γ(q). (Otherwise, we

produce an annular end A of Σ̃ bounded by γ(p(1)) of finite area, which is

impossible since the injectivity radius of Σ̃ is bounded away from zero.) Thus,

there exists a point p0 ∈ Σ̃ where L(γ(p0)) has its minimum value. Hence, γ(p0)
is a simple closed curve of least length in the free homotopy class of γ̃. Since
the distance function to γ(p0) in Σ̃ is a convex function in Σ̃ (the curvature in

Σ̃ is nonpositive), it follows, by standard lifting arguments, that π(γ(p0)) is the
unique closed geodesic in the homotopy class of γ in Σ. If γ is a simple closed
curve in Σ, then the next theorem implies π(γ(p0)) is an embedded geodesic.

Theorem 11. Suppose M is an orientable Riemannian surface, possibly with
boundary, and γ : S1 → M is a geodesic of least length in its free homotopy
class and γ is disjoint from ∂M . If γ is homotopic to an embedded simple
closed curve, then γ is injective.
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Proof. We first remark that since M is orientable, then γ is an embedded 1-
manifold as a set if and only if it is injective as a mapping; the reason for this
is that on any orientable surface, a nontrivial multiple of a simple closed homo-
topically nontrivial curve can never be homotopic to a simple closed curve (proof
by elementary covering space theory and surface theory). Thus, it remains to
prove that the image of γ is an embedded 1-manifold.

Suppose now that the image of γ is not an embedded 1-manifold and we will
derive a contradiction. Let π : M̃ → M be the infinite cyclic covering space of
M corresponding the cyclic subgroup of π1(M) generated by γ. Let α be the
embedded curve in M homotopic to γ. Let γ̃ and α̃ denote the corresponding
lifts to M̃ . Note that since M̃ is an annulus and γ̃ is a least-length geodesic
which represents the generator of π1(M), then γ̃ is a simple closed geodesic.

Let π̂ : M̂ → M̃ denote the universal cover of M̃ and let Γ be a fixed com-
ponent of π̂−1(γ̃). Note Γ is embedded since γ̃ is embedded. We will prove

that Γ is a length minimizing geodesic in M̂ in the sense that any finite arc
in Γ minimizes the distance between its end points. Otherwise, for some finite
Zn-covering space πn : M̃n → M̃ , the lifted curve γ̃n of the product γn fails
to be length minimizing in its homotopy class. Suppose n > 1 is the smallest
n ∈ N such that γ̃n fails to minimize in its homotopy class. Hence, there exists
a simple closed curve β in M̃n in the homotopy class of γ̃n that has length Lβ

that is less than the length of γ̃n, which is n times the length of γ. By the
length minimizing property of γ in M̃ and our choice of n, β is not invariant
under any nontrivial element of the group of covering transformations of the
cyclic cover πn : M̃n → M̃ .

Consider the immersed curve β̃ = πn(β) which we may assume is in general

position with itself. Since β̃ represents γn in M̃ , it is not difficult to see, using
that M̃ is annulus, that there is an interval [a, b] ⊂ [0, Lβ] such that β̃|[a, b] is an

embedded loop homotopic to γ with length L′ = b− a. Since β̃ has a corner at
β̃(a) its length is greater than L. After reparametrizing β̃, we may assume that

a = 0. Then β̃|[L′, Lβ] is homotopic to γn−1, so our choice of n implies that the

length of β̃|[L′, Lβ] is greater than (n− 1)L. But then the length of β is greater
than nL= length (γ̃n), which is the desired contradiction. Note that this length
minimizing property implies that given any two points of Γ that the compact
segment on Γ also is the unique minimizing arc in M̂ joining these points.

We now return to the proof of the theorem. Recall that the geodesic γ̃ is
length minimizing in its homotopy class and hence embedded. Since π−1(α) is
an embedded 1-manifold with a compact component α̃ which separates the two
ends of the annulus M̃ , the two ends of any noncompact component of π−1(α)

must lie in the same end of M̃ . It follows that every component of π−1(γ) other

than γ̃ is a proper arc on M̃ with ends on the same end of M̃ since each such
component stays a bounded distance from a noncompact component of π−1(α),

which has this property. Let σ : M̂ → M be the universal cover of M . Then
from the previous paragraph it follows that every component of ∆ = σ−1(γ)

is an embedded length minimizing noncompact geodesic in M̂ . If γ is not an
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embedded 1-manifold, then the component Γ defined in the previous paragraph
must intersect transversely another length minimizing component Γ′ of ∆. Note
Γ∩Γ′ must consist of more than a single point, otherwise, between two points of
Γ∩ Γ′ there is not a unique least length geodesic arc in M̂ . On the other hand,
if Γ∩Γ′ consists of a single point, then π̂(Γ′) must have its two ends in different

ends of M̃ , which we have already ruled out. This contradiction completes the
proof of the theorem.

We now prove Theorem 1 for f : Σ → R3 a complete orientable minimal
surface of finite total curvature. By Corollary 1 to Theorem 6, Σ has finite
topology. Since Σ has finite topology, Σ has a finite number of annular ends,
E1, . . . , En. Theorem 6 implies that if Σ is not simply-connected, then we may
assume that the boundary curve of each end is a geodesic.

We first analyze the case where Σ is not simply-connected. In this case we
can naturally parametrize the annular end E1 by geodesic coordinates ∂E1 ×
[0,∞), where (θ, t) ∈ E1 corresponds to the end point of the unit speed geodesic
in E1 which is orthogonal to ∂E1 at θ and at distance t.

Let E1(t) be the annular portion of E1 of distance at most t from ∂E1 and
let ∂(t) denote the component of ∂E1(t) at distance t from ∂E1. Let A(t) be the
area of E1(t). Then, by the first variation of arc length and the Gauss-Bonnet
formula,

A′(t) = Length (∂(t)) = L(t),

A′′(t) = L′(t) =

∫

∂(t)

κg = 2πχ(E(t))−
∫

E(t)

K

= −
∫

E(t)

K ≤ −C(Σ).

Since A′′(t) is monotonically increasing and bounded from above by the total
absolute curvature of Σ, there is a constant c = −C(Σ) such that Length(∂(t)) =
A′(t) ≤ ct for t ≥ 1. For ε > 0, choose t(ε) > 1 sufficiently large so that the
total absolute curvature of E(ε) = E1 − Int(E(t(ε))) is less than the number
η(1, ε) given in Corollary 9. Then the length of G(∂(t)) in S2 is at most 2c

√
ε

for t ≥ 2t(ε). But, any open mapping F : E1 → S2, with the finite area and
limt→∞ Length(F (∂(t))) = 0, must have a well-defined limit value on the end
of E1. In particular, the Gauss map G : E1 → S2 has a limiting normal vector
on the end of E1.

By the uniformization theorem, E1 is conformally the punctured unit disk
D − {0} or D − {z ∈ C | |z| ≤ r} for some r < 1. Since G : E1 → S2 is holo-
morphic and has a limiting value at the end of E1, E1 must be conformally a
punctured disk and G extends holomorphically across the puncture (this follows
easily using the Schwartz reflection principle). This result implies Σ is confor-
mally a compact Riemann surface Σ punctured in a finite number of points and
that the Gauss map of Σ extends holomorphically across the punctures.

In the case that Σ is simply-connected, the proof is similar except in that
one chooses global geodesic coordinates on Σ centered at some p0 ∈ Σ and one
lets E1 be the annular domain of points on Σ of distance at least 1 from p0.
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In the case f : Σ → Rn the proofs that Σ is conformally a compact Riemann
surface Σ punctured in a finite number of points and that the associated holo-
morphic Gauss map, G : Σ → CPn−1 extends holomorphically to G : Σ → CPn−1

are essentially the same as the three-dimensional case. In this case one applies
Remark 10 to adapt the arguments.

3 Stable minimal surfaces.

By definition, a minimal surface is locally a surface of least-area where by “local”
we mean small disks on the surface. If instead we use “local” to mean in a small
neighborhood of the entire surface, then we say that the minimal surface is
stable. More precisely we have the following definition.

Definition 1. A stable minimal surface Σ in R3 is a surface such that every
smooth compact subdomain Σ is stable in the following sense: if Σ(t) is a
smooth family of minimal surfaces with ∂Σ(t) = ∂Σ and Σ(0) = Σ, then the
second derivative of the area function A(t) of the family Σ(t) is nonnegative at
t = 0. We will say that Σ has finite index if outside of a compact subset it is
stable, which is equivalent to the property that the stability operator −(∆−2K)
has at most k negative eigenvalues on any compact subset for some fixed k.

Given a smooth variation Σ(t) of a compact minimal surface Σ with Σ(0) = Σ
and ∂Σ(t) = ∂Σ, one can express for t small the surfaces Σ(t) as normal graphs
over Σ and so one obtains a normal variational vector field V on Σ which is zero
on ∂Σ. Assume that Σ̄ is orientable with unit normal field N . Then V = fN

where f : Σ → R is a smooth function with zero boundary values. Conversely,
if f : Σ → R is a smooth function with zero boundary values, then for small
t one can find normal graphs Σ(t) which are the graphs p + tf(p)N(p) over Σ
with variational vector field fN . An elementary calculation gives the following
second variational formula [8].

Theorem 12 (Second Variation of Area Formula). Suppose Σ is a compact
oriented minimal surface and f : Σ → R is a smooth function with zero boundary
values. Let Σ(t) be a variation of Σ with variational vector field fN and let A(t)
be the area of Σ(t). Then

A′′(0) = −
∫

Σ̄

f(∆f − 2Kf)dA,

where K is the Gaussian curvature function on Σ and ∆ is the Laplace operator
on Σ.

Definition 2. If Σ is a minimal surface, then f : Σ → R is a Jacobi function if
∆f − 2Kf = 0.

Jacobi functions f on Σ arise from normal variations Σ(t), not necessarily
with the same boundary, where the Σ(t) are minimal surfaces with Σ(0) = Σ
and with variational vector field fN on Σ.
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Using standard elliptic theory, it is easy to prove that an open oriented
minimal surface Σ is stable if and only if it has a positive Jacobi function. Since
the universal covering space of an orientable stable minimal surface is stable (it
has a positive Jacobi function by composing), for many theoretical questions
concerning a stable minimal Σ, we may assume Σ is simply-connected.

Suppose Σ is a minimal surface and D ⊂ Σ is an embedded geodesic disk of
radius R on Σ centered at p which is stable. A short calculation (see below) by

way of the second variation of area formula, using the function f(t, θ) = (R−t)
R

defined in polar geodesic coordinates (t, θ) on D, gives a proof of the following
beautiful formula of Colding-Minicozzi [2] and of Pogorelov [11] for estimating
the area of D.

Theorem 13. If D ⊂ Σ is a stable minimal disk of geodesic radius r0 on a
minimal surface Σ ⊂ R3, then

πr2
0 ≤ Area(D) ≤ 4

3
πr2

0 .

Proof. We now give Colding and Minicozzi’s proof of the above formula, fol-
lowing their calculation in [2]. Since we may assume Σ is simply connected by
lifting to its universal cover, the fact that Σ has nonpositive curvature implies
D has global smooth geodesics coordinates and is embedded in Σ.

Since D has nonpositive Gaussian curvature, the area of D is at least as great
as the comparison Euclidean disk of radius r0, which implies πr2

0 ≤ Area(D).
Consider a test function f(r, θ) = η(r) on the disk D = D(r0) that is a function
of the radial coordinate r and which vanishes on ∂D. By the second variation
of area formula, Green’s formula and the coarea formula, we obtain:
(1)

0 ≤
∫

D

−f∆f+2Kf2 =

∫

D

|∇f |2+2

∫

D

Kf2 =

∫ r0

0

(η′(s))2l(s)+2

∫ r0

0

(∫

r=s

K

)
η2(s),

where K is the Gaussian curvature function on D(s) of radius s and l(s) is the
length of ∂D(s).

Let K(s) =
∫

D(s) K. Then, by the first variation of arc length and the

Gauss-Bonnet formula, we obtain:

(2) l′(s) =

∫

∂D(s)

κg = 2π −K(s) ⇒ K(s) = 2π − l′(s).

Since K ′(s) =
∫

r=s
K, substituting in (1) yields:

(3) 0 ≤
∫ r0

0

(η′(s))2l(s) + 2

∫ r0

0

K ′(s)η2(s).

Integrating (3) by parts and then substituting the value of K(s) given in (2)
yields:
(4)

0 ≤
∫ r0

0

(η′(s))2l(s)−2

∫ r0

0

K(s)(η2(s))′ =

∫ r0

0

(η′(s))2l(s)−2

∫ r0

0

(2π−l′(s))(η2(s))′.
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Now let η(s) = 1− s
r0

and so η′(s) = −1
r0

and (η2(s))′ = −2
r0

(1− s
r0

). Substi-
tuting these functions in (4) and then rearranging gives the following inequality:

(5) − 1

r2
0

∫ r0

0

l(s) +
4

r0

∫ r0

0

l′(s)(1− s

r0
) ≤ 8π

r0

∫ r0

0

(1− s

r0
) = 4π.

Integration of (5) by parts followed by an application of the coarea formula
yields:

−1

r2
0

∫ r0

0

l(s)+
4

r2
0

∫ r0

0

l(s) =
3

r2
0

∫ r0

0

l(s) =
3

r2
0

Area(D) ≤ 4π ⇒ Area(D) ≤ 4

3
πr2

0 .

We now apply the above area estimate for stable minimal disks to give a short
proof of the famous classical result of do Carmo and Peng [3], of Fischer-Colbrie
and Schoen [5] and of Pogorelov [11] which states:

Theorem 14. The plane is the only complete stable orientable minimally im-
mersed surface in R3.

Proof. If Σ is a complete orientable stable minimal surface in R3, then the
universal covering space of Σ composed with the inclusion of Σ in R3 is also a
complete immersed stable minimal surface in R3. Since Σ is a plane if and only if
its universal cover is a plane, we may assume that Σ is simply-connected. Since
the Gaussian curvature of Σ is nonpositive, Hadamard’s Theorem implies that,
after picking a base point p0 ∈ Σ, we obtain global geodesic polar coordinates
(t, θ) on Σ centered at p0. In these coordinates let D(R) denote the disk of
radius R centered at p0.

Let A(R) be the area of D(R) and note that A(R) is a smooth function of
R. The first derivative of A(R) is equal to

A′(R) = Length(∂D(R)).

Also it is easy to see by the first variation of arc length that

A′′(R) =

∫

∂D(R)

κg,

where κg is the geodesic curvature of ∂D(R). By the Gauss-Bonnet formula,
we obtain

A′′(R) = 2π −
∫

D(R)

KdA,

and so A′′(R) is monotonically increasing as a function of R. Since A′′(R) is
monotonically increasing, A(D(R)) ≤ 4

3πR2, A(0) = 0 and A′(0) = 0, then
A′′(R) ≤ 8

3π and so −
∫

D(R)
KdA is less than 2

3π. Thus, Σ has total absolute

Gaussian curvature which is finite and at most 2
3π. At this point one obtains

a contradiction in any of several different ways. One way is to appeal to a
theorem of Osserman (Theorem 1) that states that the total curvature of a
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complete orientable nonplanar minimal surface is an integer multiple of −4π.
Since the absolute total curvature of Σ is at most 2

3π, its total curvature must
be zero and we conclude Σ is a plane.

An important consequence of Theorem 14, using a blow-up argument, is
that orientable minimally immersed stable surfaces with boundary in R

3 have
curvature estimates up to their boundary of the form given in the next theorem.
(This is also Theorem 4 in the introduction.) These curvature estimates by
Schoen play an important role in numerous applications.

Theorem 15 (Schoen [13]). There exists a constant c > 0 such that for any
stable orientable minimally immersed surface Σ in R3 and p a point in Σ of
intrinsic distance d(p) from the boundary of Σ, then the absolute Gaussian
curvature of Σ at p is less than c

(d(p))2 .

The above theorem, by way of the same blow-up argument as given in the
proof of Theorem 14, implies a similar estimate for stable minimal surfaces in a
Riemannian three-manifold N3 with injectivity radius bounded from below and
which is uniformly locally quasi-isometric to Euclidean space (manifolds with
these properties are called homogeneouly regular); in particular, one obtains
a similar curvature estimate for any compact Riemannian three-manifold M ,
where the constant c depends on M . We now give two proofs of the aforemen-
tioned blow-up argument, each of which is different from the argument given by
Schoen [13].

Proof. Suppose the desired curvature estimate were to fail. By taking universal
covering spaces, we may assume that the stable minimal surfaces we are con-
sidering are simply-connected. We may assume that there exists a sequence of
points p(n) ∈ Σ(n) in the interior of stable orientable simply-connected min-
imal surfaces Σ(n) such that the absolute Gaussian curvature at p(n) is at
least n

(d(p(n),∂Σ(n))2 . Let D(p(n)) be the geodesic disk in Σ(n) centered at p(n)

of radius d(p(n), ∂Σ(n)). Let q(n) ∈ D(p(n)) be a point in D(p(n)) where
the function d

2|K| : D → [0,∞) has a maximum value; here d is the distance
function to the boundary of D and |K| is the absolute value of the Gaussian
curvature (for simplicity we omit the dependence of both d, D and |K| on n).

Let D(n) ⊂ D(p(n)) be the geodesic disk of radius d(q(n))
2 centered at q(n). Let

D̃(n) be the disk obtained by first translating D(n) so that q(n) is moved to
the origin in R3 and then homothetically expanding the translated disk by the
scaling factor

√
|K(q(n))|. The normalized disks D̃(n) have Gaussian curva-

ture −1 at the origin, Gaussian curvature bounded from below by −4, and the
radii r(n) of the D̃(n) go to infinity as n→∞. A standard compactness result

(see for example [7] or [10]) shows that a subsequence of the D̃(n) converges
smoothly as subsets to a complete simply-connected immersed minimal surface
D(∞) passing through the origin of bounded Gaussian curvature and with no
boundary. It is straightforward to show that the limit of stable minimal surfaces
is stable and so D(∞) is stable. By Theorem 14, D(∞) is a plane but by con-

struction D(∞) has Gaussian curvature −1 at the origin since each of the D̃(n)

11



have this property. This contradiction proves the desired curvature estimate of
Schoen.

For the sake of completeness we give a self-contained modification of the
end of the proof of Theorem 15 given in the previous paragraph that does not
depend on the stated compactness result or on the statement of Theorem 14.
A slight modification of these same arguments can be used to give a simple
complete proof (see also [14]) of Osserman’s Theorem in dimension 3, which is
Theorem 1.

If E(R) is a stable minimal geodesic disk of radius R, then Theorem 13
implies A(R) ≤ 4

3πR2. From the calculations in the proof of Theorem 14, we
know A′′(r) = 2π −

∫
E(r)

KdA is a monotonically increasing function of r for

0 ≤ r ≤ R. Since A(0) = 0, A′(0) = 0 and A(R) ≤ 4
3πR2, for some small

positive δ independent of R, then for r ∈ [0, δR], A′(r) = Length(∂E(r)) < 3πr

and A′′(r) < 3π. In particular, −
∫
E(δR)

KdA < π. For what follows, we fix this

number δ > 0.
Recall that r(n) is the radius of the disk D̃(n) defined above and the r(n) →

∞ as n → ∞. For each r, 0 < r < δr(n), let D̃(r, n) be the geodesic subdisk of

radius r. From the previous paragraph, such a disk D̃(r, n) has absolute total

curvature at most π and the length of ∂D̃(r, n) is less than 3πr. Since r(n) →∞
as n →∞ and the total absolute curvature of each D̃(δr, n) is at most π, there
exist positive integers k(n) such that 2k(n)+2 < δr(n) and such that the total

curvatures C(n) of the annuli Ã(n) bounded by ∂D̃(2k(n), n) and ∂D̃(2k(n)+2, n)
satisfy C(n) → 0 as n →∞.

Now consider the new geodesic disks D̂(n) obtained by homothetically scal-

ing D̃(n) by the factor 2−k(n) and let Â(n) ⊂ D̂(n) be the correspondingly scaled

annuli. Let ∂D̂(2, n) ⊂ D̂(n) be the circle of geodesic radius 2 in D̂(n). Since

for any point of ∂D̂(2, n), the geodesic disk of radius 1 in D̂(n) centered at such

a point is contained in Â(n) and so has total absolute curvature approaching
zero as n → ∞. Our previous curvature estimate in Corollary 9 implies that
the Gaussian curvature of the D̂(n) uniformly approach zero along ∂D̂(2, n) as

n → ∞. Since the length of ∂D̂(2, n) is less than 6π and G is conformal, it

follows that as n →∞, the length of G(∂D̂(2, n)) in S2 approaches zero, where

G is the Gauss map of D̂(2, n).
By our previous discussion, there exists an ε > 0 such that the Gaussian

image G(D̃(1, n)) contains a spherical cap of radius ε centered at the value of G

at the center of D̃(1, n) ⊂ D̃(n). It follows that G(D̂(2, n)) contains the same

spherical cap. Since the Gauss map of D̂(2, n) is an open mapping, G(D̂(2, n))

contains a fixed size spherical cap and Length (G(∂D̂(2, n))) → 0 as n→∞, for

n large the image by G of D̂(2, n) must have area approaching the area of S2

which is 4π. But this contradicts the fact that the total curvature of D̂(2, n) is
at most π. This contradiction proves the desired curvature estimate.

Proof of Theorem 5. Again we follow the arguments of Colding and Minicozzi
[2], with some modifications. Recall that if M is a complete orientable minimal
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surface with finite index, then, outside of some compact domain, M is stable.
Since the total curvature of M in a compact subdomain is finite, in order to
prove the theorem, we may assume that M is stable, orientable and ∂M is
analytic and compact.

From this point on in the proof of the theorem, one follows a variant of the
arguments given in Theorem 13 in order to prove that the area grows quadrat-
ically and of Theorem 14 to prove that M has finite total curvature. First one
checks that the area of M(R) = {p ∈ M | d(p, ∂M) ≤ R} grows quadratically
in R for R > 1. To do this, one considers the test function η(s) = 1 − s

r0

on
M(r0) (rather than the distance to a point as in the proof of Theorem 13) to
calculate the area of M(ro) for r0 > 1. (One also needs to multiply η(s) by a
fixed cut off function which is zero on ∂M and is equal to 1 outside of M(1).)
We do not provide these elementary arguments and refer the interested reader
to the Colding-Minicozzi reference [2] for the details.

Remark 16. Recently, A. Ros [12] proved the longstanding conjecture that
there are no complete stable nonorientable minimal surfaces in R3. It is not
known if his result holds if the surface is allowed to have nonempty compact
boundary.

William H. Meeks, III at bill@math.umass.edu,
Mathematics Department, University of Massachusetts, Amherst, MA 01003
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