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Abstract

We prove that the closure of a complete embedded minimal surface M in a Rie-
mannian three-manifold N has the structure of a minimal lamination, when M has
positive injectivity radius. When N is R3, we prove that such a surface M is properly
embedded. Since a complete embedded minimal surface of finite topology in R3 has
positive injectivity radius, the previous theorem implies a recent theorem of Cold-
ing and Minicozzi: A complete embedded minimal surface of finite topology in R3 is
proper. More generally, we prove that if M is a complete embedded minimal surface
of finite topology and N has nonpositive sectional curvature (or is the Riemannian
product of a homogeneously regular Riemannian surface with R), then the closure of
M has the structure of a minimal lamination.
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Key words and phrases: Minimal surface, stability, curvature estimates, finite total
curvature, minimal lamination, minimal parking garage structure, injectivity radius,
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1 Introduction.

The reader not familiar with the subject of minimal laminations should think about a
geodesic on a Riemannian surface. If the geodesic is complete and embedded (a one-to-
one immersion), then its closure is a geodesic lamination of the surface. When this geodesic
has no accumulation points, then it is proper. Otherwise, there pass complete embedded
geodesics through the accumulation points forming the leaves of the geodesic lamination of
the surface. The similar result is true for a complete embedded minimal surface of locally
bounded curvature (curvature is bounded in compact extrinsic balls) in a Riemannian
three-manifold [18]. Our main theorem below replaces this bounded curvature hypothesis
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on the minimal surface by the hypothesis of positive injectivity radius. Also, see Theorem
4 in section 2 for a useful generalization of the following main theorem of this paper.

Theorem 1 (Minimal Lamination Closure Theorem). If M is a complete embedded
minimal surface with positive injectivity radius in a Riemannian three-manifold N, then
the closure M of M has the structure of a C1,α-minimal lamination of N .

In the case N = R3, we have the following stronger result. This result is a consequence
of Theorem 1 and its proof (assuming Theorem 4) appears in section 2, almost immediately
after the statement of Theorem 7.

Theorem 2. A complete embedded connnected minimal surface in R3 with positive injec-
tivity radius is always properly embedded.

Theorem 2 implies Colding and Minicozzi’s recent theorem that a complete embedded
minimal surface of finite topology in R3 is properly embedded. The reason for this is that
a complete embedded minimal surface with finite topology in R3 has positive injectivity
radius, (see the short proof of this fact given immediately after the statement of Theorem 5
of section 2). The strategy of our proof of Theorem 1 is similar to the proof of some of the
results in [1]. However, our starting point is positive injectivity and our theorem applies
in three-dimensional manifolds. We devote section 2 to the proof of Theorem 1 and some
other closely related results.

In section 3 we give some other interesting applications of the Minimal Lamination
Closure Theorem which include the following results given below in Theorem 3. Some of
these applications also depend on the Local Picture on the Scale of Topology Theorem from
[13], whose statement is presented for the readers convenience in Theorem 14 in section 3.
We remark that the manifolds N and ∆ in Theorem 3 below need not be complete. We
also refer the interested reader to our related recent paper [17] for the theory of properly
embedded minimal surfaces in M × R, where M is a compact Riemannian surface.

Theorem 3. Suppose M is a complete embedded minimal surface of finite topology in a
Riemannian three-manifold N .

1. If N has nonpositive sectional curvature, then the closure M has the structure of a
minimal lamination.

2. If N = ∆ × R where ∆ is a Riemannian surface, then M has the structure of a
minimal lamination of N .

Corollary 1. Suppose M is a complete embedded connected minimal surface of finite
topology in ∆×R, where ∆ is a homogeneously regular Riemannian surface of nonnegative
curvature. If M is not properly embedded in ∆ × R , then ∆ is a flat torus and M is a
totally geodesic submanifold. (Also, see Theorem 15)
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2 Proof of the minimal lamination closure theorem.

In this section we prove a general result concerning the limit set of certain complete
embedded minimal surfaces in Riemannian three-manifolds.

We recall that if M ⊂ N , then p ∈ N is a limit point of M if p ∈ M − M or if p ∈ M
and there is a sequence of points pn ∈ M which converges to p in N but does not converge
to p in M in the intrinsic Riemannian topology on M . We let L(M) denote the set of
limit points of M in N .

The following theorem is the main result of this section and contains Theorem 1 given
in the Introduction.

Theorem 4. If M is a complete embedded minimal surface of positive injectivity radius
in a Riemannian three-manifold N (not necessarily complete), then the closure M of M

in N has the structure of a C1,α-minimal lamination L with the components of M being
leaves of L. In particular, if M is connected, one of the following three statements holds:

1. M is properly embedded in N , (hence, the limit set L(M) is empty).

2. The limit set L(M) ⊂ L has the structure of nonempty sublamination which is
disjoint from M and M is properly embedded in the open set N − L(M).

3. L(M) = L and M is not the only leaf in L (here we consider L to be a subset of N).

4. Furthermore, even without the hypothesis that M is connected,

(a) The universal covers of the leaves of L(M) are stable.

(b) If the metric of N is homogeneously regular, then there exists positive constants
C and ε, depending on N and the injectivity radius of M such that the absolute
Gaussian curvature of M

in the ε-neighborhood of any limit leaf of M is less than C. In particular, in
this case, the injectivity radius of the minimal lamination L (the leaves of L)
is also positive.

The proof of the above theorem is inspired by papers of Colding and Minicozzi [1, 3,
4, 5, 6, 2], where they study the local and global geometry of embedded minimal surfaces
with fixed finite genus in Riemannian three-manifolds. Especially important in our proof
of Theorem 4 will be their recent paper [1], where they prove the following theorem.
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Theorem 5. A complete connected embedded minimal surface M of finite topology in R3

is properly embedded.

We now explain why this result is a simple consequence of Theorem 2. By Theorem
2, it is sufficient to observe that the injectivity radius of a complete embedded minimal
surface M in R3 of finite topology is positive. To see this, suppose pn ∈ M are points
where the injectivity radius function satisfies limn→∞ InjM (pn) = 0; in particular, the
pn diverge in M . Let γ(n) be an embedded geodesic loop based at pn, which is smooth
except at pn of length 2 · InjM (pn) (note γ(n) exists since M has nonpositive curvature).
Since M has nonpositive curvature, the Gauss-Bonnet formula implies γ(n) cannot bound
a disk on M . Since M has finite topology and the γ(n) form a divergent sequence, we
can choose the γ(n) on one annular end E of M . Then γ(1) and γ(n) bound a compact
annulus E(n) ⊂ E. Each E(n) has absolute total curvature at most 4π by the Gauss-
Bonnet formula, hence the end E has finite absolute total curvature. Since E is complete,
embedded and has finite total curvature, it is asymptotic to a half catenoid or the end of
a plane and the injectivity radius of M restricted to E is bounded away from zero. Hence,
M has positive injectivity radius. This proves Theorem 5 follows from Theorem 2.

Throughout the paper it will be crucial to distinguish between intrinsic and extrinsic
balls centered at points of a surface Σ inside a Riemannian three-manifold N ; given p ∈
Σ and R > 0, we will denote by BΣ(p, R) (resp. BN (p, R)) the closed intrinsic (resp.
extrinsic) ball of center p and radius R. Furthermore:

Definition 1. Σ(p, R) will stand for the component of Σ ∩ BN (p, R) passing through p.

Our proof of Theorem 4 depends on proving an appropriate version of Proposition 1.1
in [1] for the case of a compact embedded minimal disk of fixed size small geodesic radius,
using standard blow-up arguments. However, we feel that our arguments at key points
are somewhat different from those in [1] and may illuminate the reader not only in the
three-manifold setting but also in their case of minimal disks in R3.

For the readers convenience, we now state explicitly Proposition 1.1 in [1], which
corresponds to our Theorem 6 stated immediately after it.

Proposition 1.1. There exists δ1 ∈ (0, 1
2) so that if Σ ⊂ R3 is an embedded minimal

disk, then for all intrinsic balls BΣ(x, R) in Σ − ∂Σ:

Σ(x, δ1R) ⊂ BΣ(x,
R

2
).

Theorem 6. Suppose Σ is a compact embedded minimal disk in a homogeneously regular
three-manifold N with injectivity radius function IΣ : Σ → [0,∞) equal to the distance
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Figure 1: The portions of Σ1, Σ2 inside BN (p, s/2) have curvature estimates.

to the boundary function dΣ(·, ∂Σ). There exist numbers δ ∈ (0, 1
2) and R0 > 0, both

depending only on N , such that if BΣ(x, R) ⊂ Σ − ∂Σ and R ≤ R0, then:

Σ(x, δR) ⊂ BΣ(x,
R

2
).

Furthermore, Σ(x, δR) is a compact embedded minimal disk in BN (x, δR) with ∂Σ(x, δR) ⊂
∂BN (x, δR).

Notice that δ < 1
2 is a natural assumption in the above definition, since the intrinsic

distance dominates the extrinsic distance.
Before proving Theorem 6, we discuss some of its consequences including the proofs of

Theorem 2 and Theorem 4.
An immediate consequence of the curvature estimates of Colding and Minicozzi in [6]

is the following theorem. We remark that these curvature estimates in a homogeneously
regular three-manifold can be expressed in terms of the intrinsic or extrinsic curvature by
the Gauss equation.

Theorem 7 (Colding, Minicozzi). Let N be a homogeneously regular three-manifold.
There exist constants ε > 0, c > 0 and λ ∈ (0, 1), depending only upon N , such that if
Σ1 and Σ2 are disjoint embedded minimal disks in BN (p, s), s ≤ ε, with ∂Σi ⊂ ∂BN(p, s),
and if each Σi meets BN (p, λs), then each component of Σi ∩ BN (p, s/2) which intersects
BN (p, λs) satisfies |Ai|2 ≤ c/s2 for i = 1, 2. Here, Ai is the second fundamental form of
Σi, see Figure 1.

Remark 1. Colding and Minicozzi’s idea to prove Theorem 7 is to reduce it to their one-
sided curvature estimates in [6] as follows. Using Σ1 and Σ2 as barriers, one constructs
a stable minimal disk F between Σ1 and Σ2 with F ⊂ BN (p, s), ∂F ⊂ ∂BN (p, s). The
surface F is stable and is as close to p as Σ1 and Σ2. Then the curvature bounds for the
stable F allow one to apply the one-sided curvature estimates in [6].
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We now apply Theorem 4 to prove Theorem 2.

Proof of Theorem 2. Theorem 2 states that any complete embedded minimal surface
M ⊂ R3 with positive injectivity radius is properly embedded. If this were not the case
for M, then either Theorem 1 or Theorem 4 shows that the closure of M has the structure
of a minimal lamination of R3 with some limit leaf L and the last statement of Theorem 4
shows that M has bounded curvature in some ε-neighborhood of L. Theorem 1.6 in [18]
states that the limit leaves of a minimal lamination L of R3 are planes and Lemma 1.3
in [18] used in its proof states that a nonflat leaf of L does not have bounded curvature
in any ε-neighborhood of a limit leaf of L. Therefore, M is proper in R3 which proves
Theorem 2.

We next apply Theorems 6 and 7 to prove Theorem 4.

Proof of Theorem 4. Suppose M is a complete embedded minimal surface satisfying
the positive injectivity radius hypothesis of Theorem 4 in a Riemannian three-manifold
N . By the proof of Lemma 1.1 in [18], the closure M of M will be a minimal lamination
of N if M has locally bounded curvature in the following sense: for every p ∈ N , there
exists a neighborhood of p in N where M has bounded curvature. So it remains to prove
that M has locally bounded curvature.

If M does not have locally bounded curvature in N , then there exists a point p ∈ N

such that in arbitrarily small extrinsic balls centered at p, M does not have bounded cur-
vature. Embed a small 2ε-neighborhood BN (p, 2ε) of p isometrically into a homogeneously
regular three-manifold Ñ . We will apply Theorem 6 in Ñ . Also choose ε smaller than
the injectivity radius of M . By assumption, there exists a sequence pn ∈ M diverging in
M , pn → p in Ñ , where pn has absolute curvature at least n and such that the intrinsic
geodesic disks BM (pn, ε) of radius ε centered at the points pn lie in BN (p, 2ε) and are
pairwise disjoint (these BM (pn, ε) are topologically disks since ε has been chosen smaller
than the injectivity radius of M , and can be assumed pairwise disjoint because p is a limit
point of M). Also, we will assume that ε is sufficiently small so that the geodesic spheres
in Ñ centered at p of radius less than or equal to ε are mean convex. This assumption
guarantees that if r < ε and D is a compact minimal disk in B

Ñ
(p, r) and its boundary is

contained outside of B
Ñ

(p, 1
4r), then D intersected with the interior of B

Ñ
(p, 1

4r) consists
of disk components (or is empty) with their boundaries in ∂B

Ñ
(p, 1

4r).
By Theorem 6 (the disks BM (pn, ε) satisfy the injectivity radius function hypothesis

of Theorem 6), there exist a δ ∈ (0, 1
2) and an R0 > 0 (which we may assume is less than

ε), so that for R ≤ R0, the component M(pn, δR) of M ∩ BÑ (pn, δR) that contains pn

is a compact disk, whose boundary is on ∂BÑ (pn, δR). Hence for n large, BÑ (p, δ
4R) ∩

M(pn, δR) contains a disk containing pn, whose boundary is on the boundary of B
Ñ

(p, δ
4R),

see Figure 2. This yields an infinite number of disjoint embedded minimal disks in this
ball, with boundaries on the boundary of the ball, and, since pn → p, one obtains a
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Figure 2: The thickest line represents the component M(pn, δR).

contradiction to the curvature estimates given in Theorem 7. This completes the proof of
the fact that L = M is a minimal lamination, assuming Theorem 6.

We now verify points 1, 2, 3 in the statement of Theorem 4 in the case M is connected.
Note that if M is properly embedded, then, by definition of proper, L(M) = Ø and
M = M , which is the possibility given in point 1. Suppose now that M is not properly
embedded and let L(M) be the nonempty limit set of M . Suppose p ∈ L(M) and {pn}n

is a divergent sequence of points in M that converge to p in N . Since the curvature
of M is bounded in a small neighborhood of p, for some small ε > 0, we may assume
{BM (pn, ε)}n is a collection of disjoint disks that converge to a disk Dp ⊂ L(M). Now
it is clear (by analytic continuation, i.e., the holonomy of the lamination) that a compact
arc in L starting at p can be lifted into the leaf of M through pn, for n large. Thus, each
point of L is a limit point of M . Also, by the same reasoning, L ⊂ L(M). Hence, L(M)
is a sublamination of L.

If M∩L(M) 6= Ø, then, by connectedness, M is a leaf of L(M), and so, M is contained
in the closed set L(M) of N (where we consider L(M) to be a subset of N with the
structure of a lamination). Hence, if M ∩L(M) 6= Ø, then M ⊂ L(M), and so, L(M) = L
(both considered to be laminations). By the definitions of limit points and properness, if
M ∩L(M) = Ø and L(M) 6= Ø, then M is properly embedded in the open set N −L(M).
This completes the proof of points 1, 2, 3.

We now prove the statement 4(a) at the end of Theorem 4. Let L be a limit leaf of
L. By statement 1 of Lemma 18 in the Appendix, if π : L̃ → L is the universal cover of
L, then L̃ is stable. Assume now that N is homogeneously regular (and in particular N is
complete) and we will prove statement 4(b). It follows from Schoen’s curvature estimates
for stable minimal surfaces immersed in a homogeneously regular three-manifold, that L̃
(and hence L) has bounded curvature with the bound being independent of the limit leaf
L. It follows that there is a lower bound on the injectivity radius of the leaves of L, which
consists of components of M and leaves of L(M). Now by Theorem 6 and Theorem 7, we
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obtain a uniform estimate C on the absolute curvature of M in some fixed ε-neighborhood
of L(M). This completes the proof of the last statement of Theorem 4, and so, the theorem
now follows.

The proof of Theorem 6 will be carried out in the following subsections.

2.1 A chord arc property for embedded minimal disks with boundary
on the boundary of a ball.

We now assume that N is a homogeneously regular three-manifold. Note that after scaling
the metric of N by a fixed large constant, we may assume:

1. The injectivity radius of N is at least 10 at every point.

2. The geodesic spheres of radius less than or equal to 10 are mean convex.

3. Conditions 1 and 2 give rise to the following convex hull property for compact minimal
surfaces Σ: If Σ is a compact minimal surface in BN (p, 10) whose boundary lies in
BN (p, ε), ε ≤ 10, then Σ ⊂ BN (p, ε). Furthermore, if also η ∈ (0, ε) and Σ is a disk
whose boundary lies outside of BN (p, η), then the interior of BN (p, η) intersects Σ
in open disk components (possibly empty) with their boundaries in ∂BN (p, η).

The next proposition corresponds to the similar Proposition 2.1 in [1]. We remark
that their Proposition 2.1 is analogous to the earlier stated Proposition 1.1; there is an
additional boundary hypothesis in Proposition 2.1, as in our Proposition 8 below.

Proposition 8. Let Σ ⊂ N be a compact embedded minimal disk. There exists a δ2 ∈
(0, 1

2) independent of Σ such that if x ∈ Σ, Σ ⊂ BN (x, R) with R ≤ 1 and ∂Σ ⊂
∂BN (x, R), then Σ(x, δ2R) ⊂ BΣ(x, R

2 ).

Proof. We will give a variant of the proof of Proposition 2.1 in [1]. Our proof uses Meeks’
Lamination Metric Theorem (Theorem 2 in [11]) to shorten and clarify Colding and Mini-
cozzi’s argument.

We will give a proof by contradiction. Suppose there is no such universal δ2. Then,
for each n ∈ N, we can find an embedded minimal disk Σ(n) ⊂ BN (xn, Rn), with xn ∈
Σ(n) and Rn ≤ 1, such that ∂Σ(n) ⊂ ∂BN (xn, Rn) but Σ(n)(xn, Rn

n ) is not contained in
BΣ(n)(xn, Rn

2 ). Multiplying the metric of BN (xn, Rn) by n
Rn

, we obtain new balls B(n)
of radius n, which, when we view in geodesic coordinates centered at the corresponding
origins x̃n (which we identify with the origin in R3), are arbitrarily close for n large enough
to balls of radius n in R3 centered at the origin ~0. Let Σ̃(n) be the associated minimal
surfaces in B(n), see Figure 3. Note that by assumption, Σ̃(n)(~0, 1) is not contained
in BΣ̃(n)(~0, n

2 ), which implies that the diameters of the Σ̃(n)(~0, 1) are unbounded; we
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Figure 3: The component Σ̃(n)(~0, 1) inside the rescaled surface Σ̃(n).

will obtain a contradiction by proving the surfaces Σ̃(n)(~0, 1) have uniformly bounded
diameter.

Assume for the moment that for all R > 0, the Gaussian curvatures of the surfaces
Σ̃(n)∩BR3 (~0, R) are uniformly bounded. It is a standard result that a subsequence of these
surfaces converges to a minimal lamination of R3 with empty singular set of convergence.
More precisely, given any sequence of points pn ∈ Σ̃(n) that converges to a point p ∈ R3

(limit geodesic coordinates), then there exists an ε > 0 depending on the uniform local
curvature bound of the Σ̃(n) around p, such that the intrinsic ball B

Σ̃(n)
(pn, ε) ⊂ Σ̃(n) is

a graph of uniformly bounded gradient over the tangent plane TpnΣ̃(n). A subsequence of
these graphs converges to a minimal disk G(p) of geodesic radius ε centered at p which is
also a graph over its projection to the tangent space at p. Furthermore, G(p) satisfies the
same uniform curvature estimates as the Σ̃(n). A standard diagonal argument coupled
with the proof of Lemma 1.1 on limit laminations in [18] implies that a subsequence of
the Σ̃(n) converges to a C1,α minimal lamination L of R3 with empty singular set of
convergence.

Let L be the leaf of L passing through ~0. First suppose L is proper in R3. If the
convergence of the Σ̃(n) to L has multiplicity one, then we can lift the component L(~0, 2)
of L∩BR3(~0, 2) passing through the origin to a compact domain inside Σ̃(n) for n large and
change distances arbitrarily small amounts. In particular, the diameter of Σ̃(n)(~0, 1) is
less than twice the diameter of L(~0, 2), which gives a contradiction in this case. Hence, the
convergence of the Σ̃(n) to L has higher multiplicity, and so, by Lemma 18, the universal
cover of L is stable complete and orientable in R3; hence, the universal cover of L is flat,
which implies that L is a plane. Since Σ̃(n)(~0, 1) converges smoothly to a disk of radius
1 in L, the surfaces Σ̃(n)(~0, 1) are themselves graphs of small gradient over a plane which
implies that the diameter of Σ̃(n)(~0, 1) is less than 3 for n large, which again gives a
contradiction.
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We now know that L cannot be proper in R3. Since it is a leaf of a minimal lamination,
Theorem 1.6 in [13] implies that L is properly embedded in a halfspace or a slab in R3, it
has infinite topology and unbounded Gaussian curvature. Since L is not flat and so not
stable, then statement 5 of Lemma 18 in the Appendix implies the convergence of Σ̃(n) to
L is of multiplicity one, so we can lift any simple closed curve α on L to a simple closed
curve on Σ̃(n). This lifted curve bounds a disk Dn ⊂ Σ̃(n). By our convex hull property
for the metric on B(n) (before scaling, assumption 3 at the beginning of this section), the
disks Dn are contained in a fixed ball of R3. By the isoperimetric inequality, these disks
have uniformly bounded area and since they also have uniformly bounded curvature by
our assumptions, then they converge to a disk bounded by α. In particular, L is simply
connected, which gives a contradiction.

Therefore, we deduce that the curvatures of the surfaces Σ̃(n) cannot be bounded in
some fixed ball in the limit R3. Hence, after choosing a subsequence, we may assume that
there are points pn ∈ Σ̃(n) that stay at uniformly bounded distances from ~0 and such that
the curvature of Σ̃(n) is becoming unbounded at pn. Assume pn converges to a point q.
By Colding and Minicozzi’s work in [2,3,4], inside balls centered at q of diverging radius in
B(n) (especially see Theorem 0.1 in [4]), after extracting a subsequence, the surfaces Σ̃(n)
converge to a minimal foliation L of R3 by planes (which after a rotation can be assumed
to be horizontal), with singular set of convergence being a connected transverse Lipschitz
curve S(L).

By Meeks’ C1,1-Regularity Theorem [12], S(L) is a vertical line in R3. If S(L) is
disjoint from BR3(~0, 1), then our previous estimates show that Σ̃(n)(~0, 1) is an almost
horizontal disk and so the diameter of Σ̃(n)(~0, 1) is less than 3, which gives a contradiction.
So suppose the line S(L) intersects BR3(~0, 1). In this case, Meeks’ Lamination Metric
Theorem [11] implies that for n large, and given any two points p, q ∈ Σ̃(n)(~0, 1), there
exists a length minimizing geodesic α(n, p, q) in Σ̃(n)∩BR3(~0, 2) joining p to q with length
not more than dR3(p, S(L)) + dR3(q, S(L)) + 2 + εn, where εn → 0 as n → ∞ (one shows
that these geodesics converge C1, away from possibly two points, to the union of two
horizontal line segments and a vertical line segment in S(L) as n → ∞ or to some subset
of such segments). In particular, the intrinsic diameter of Σ̃(n)(~0, 1) is bounded by 6 for
n large, which gives the desired contradiction. This completes the proof of Proposition
8.

2.2 Expanding the scale of being δ2 weakly chord arc.

From this point on in this section, Σ will denote a smooth compact embedded minimal
disk in N such that its radius of injectivity function IΣ is equal to the distance function
to ∂Σ. This is important to keep in mind. This property forces all geodesic balls in Σ,
disjoint from ∂Σ, to have geodesic coordinates and to be disks topologically.

We now define the key notion of a subdisk of Σ being δ weakly chord arc.
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Definition 2. (Weakly chord arc). Let δ ∈ (0, 1
2). An intrinsic ball BΣ(x, R) ⊂ Σ − ∂Σ

is said to be δ weakly chord arc if for all s ≤ R, the following condition holds:

Σ(x, δs) ⊂ BΣ(x,
s

2
).

Notice that the definition that a ball BΣ(x, R) in Σ be δ weakly chord arc requires
BΣ(x, R) ⊂ Σ− ∂Σ.

Definition 3. Given δ ∈ (0, 1
2) and x ∈ Σ − ∂Σ, define:

R(x, δ) = sup{R < dist(x, ∂Σ) | the ball BΣ(x, R) is δ weakly chord arc}.

Remark 9. Suppose BΣ(x, R) ⊂ Σ − ∂Σ is δ weakly chord arc where R ≤ 10. Notice
that since δ ∈ (0, 1

2), then δR ≤ 10 as well. Then, for all s ≤ R, ∂Σ(x, δs) ⊂ ∂BN (x, δs),
since Σ(x, δs) ⊂ BΣ(x, s

2) and BΣ(x, s
2) ∩ ∂Σ = Ø. The convex hull property 3 given at

the beginning of section 2.1 implies Σ(x, δs) is a compact disk.
We note that our definition of the R(x, δ) function differs somewhat from the related

Rδ(x) function defined in [1]. In their definition they take the supremum over all possible
R < dist(x, ∂Σ) such that Σ(x, δR) ⊂ BΣ(x, R

2 ). Note that R(x, δ) ≤ Rδ(x).
We now state and prove a key proposition that in certain cases allows us to prove that

if a given ball BΣ(x, R) is δ2 weakly chord arc, then BΣ(x, 5R) is also δ2 weakly chord
arc. The next result corresponds to Proposition 3.4 in [1] and, as in the previous proof
of Proposition 8, we give a somewhat different approach to proving it. Here, δ2 is the
constant that was defined in Proposition 8.

Proposition 10. There exists a constant Cb > 5, independent of Σ, so that if R0 > 0 is
such that CbR0 ≤ 1 and BΣ(y, CbR0) ⊂ Σ− ∂Σ satisfies:

every intrinsic subball BΣ(z, R0) ⊂ BΣ(y, CbR0) is δ2 weakly chord arc,

then, BΣ(y, 5R0) is δ2 weakly chord arc. In particular, R(y, δ2) ≥ 5R0.

Proof. Were Proposition 10 to fail, there would exist Cn > n, Rn > 0 with CnRn ≤ 1, and
embedded minimal disks Σ(n) ⊂ N satisfying: BΣ(n)(yn, CnRn) ⊂ Σ(n) − ∂Σ(n), every
intrinsic subball BΣ(n)(z, Rn) ⊂ BΣ(n)(yn, CnRn) is δ2 weakly chord arc but BΣ(n)(yn, 5Rn)
is not δ2 weakly chord arc. The surface BΣ(n)(yn, CnRn) is a disk by our hypothesis that
the injectivity radius function of Σ(n) is equal to the intrinsic distance function to the
boundary of Σ(n).

Suppose that, after passing to a subsequence,

Σ(n)(yn, 5Rn)∩ ∂BΣ(n)(yn, CnRn) = Ø for all n,
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Figure 4: dΣ(n) denotes the intrinsic distance in Σ(n).

and let us check that for all n, BΣ(n)(yn, 5Rn) is δ2 weakly chord arc (which is a contra-
diction). Since BΣ(n)(yn, CnRn) ⊂ Σ(n) − ∂Σ(n), the above intersection equation implies
Σ(n)(yn, 5Rn) ⊂ Σ(n) − ∂Σ(n). Hence, for every s ≤ 5Rn, Σ(n)(yn, s) does not intersect
∂Σ(n), and therefore, ∂Σ(n)(yn, s) ⊂ ∂BN (yn, s). By the convex hull property (recall that
Rn → 0), Σ(n)(yn, s) is a disk. Since s ≤ 1, for n large enough, Proposition 8 applies to
Σ(n)(yn, s) and BΣ(n)(yn, 5Rn) is δ2 weakly chord arc.

Hence, we can suppose that Σ(n)(yn, 5Rn) ∩ ∂BΣ(n)(yn, CnRn) 6= Ø for all n. Since
Σ(n)(yn, 5Rn) is connected, we can find a path γn ⊂ Σ(n)(yn, 5Rn) starting at yn and
ending at a point of ∂BΣ(n)(yn, CnRn). After possibly shrinking Σ(n), we can assume
each disk Σ(n) is contained in the ambient ball N(n) = BN (yn, 2), since CnRn ≤ 1. Scale
the metric of N(n) by 1

Rn
to obtain Ñ(n), denote the surfaces related to Σ(n) in the

new metric by Σ̃(n), and other related objects denote with tilde as well. Balls of radius
CnRn then become balls of radius Cn > n, and extrinsic balls of radius Rn become balls of
radius one. We do the scaling in geodesic coordinates with origin at yn. The corresponding
expanded path γ̃n joins ~0 with a point at intrinsic distance Cn from ~0. Since Cn → ∞,
there exists a subset S̃n = {z̃n(1), . . . , z̃n(k(n))} ⊂ γ̃n ∩ B

Σ̃(n)
(~0, Cn

2 ) with

1. k(n) → ∞ as n → ∞.

2. The intrinsic distance in Σ̃(n) between any two of the points of S̃n tends to infinity
as n → ∞.

In the original scale, we have corresponding finite sets Sn ⊂ γn ∩ BΣ(n)(yn, CnRn
2 ), see

Figure 4. We claim that for any z̃ ∈ S̃n, Σ̃(n)(z̃, δ2) is a compact disk with ∂Σ̃(n)(z̃, δ2) ⊂
∂B

Ñ(n)
(z̃, δ2). To prove this, it suffices to check that the corresponding disk BΣ(n)(z, Rn) is

δ2 weakly chord arc. This follows from our δ2 weakly chord arc hypothesis together with

12



Figure 5: W (z̃, z̃′, n) separates ∆(z̃, q, n) from ∆(z̃′, q, n).

the inclusion BΣ(n)(z, Rn) ⊂ BΣ(n)(yn, CnRn) (which in turn follows from the intrinsic
triangle inequality).

By the last claim and point 2 above, the disks Σ̃(z̃, δ2) are pairwise disjoint for distinct
points z̃ of S̃n for n large. Note that for any z̃ ∈ S̃n, Σ̃(n)(z̃, δ2) is contained in the the
ambient ball B̃n(6) of Ñ(n) of radius 6 centered at the origin ỹn. This follows because
given x ∈ Σ(n)(z, δ2Rn), dN(x, yn) ≤ dN (x, z) + dN(z, yn) < δ2Rn + 5Rn < 6Rn where
dN stands for the extrinsic distance in N . Also note that B̃n(6) is arbitrarily close in
the metric sense to the usual ball BR3(~0, 6). The number of disks Σ̃(n)(z̃, δ2) centered
at points z̃ ∈ S̃n diverges as n → ∞, by condition 1 in our choice of the points. Hence,
after replacing by a subsequence, there is a point q ∈ BR3(~0, 6) (in the fixed coordinates
BR3(~0, 6) for all of the B

Ñ(n)
(ỹn, 6)) where the number of points in B

Ñ(n)
(q, 1

n) ∩ S̃n

is diverging as n → ∞ (in particular, in B
Ñ(n)

(q, δ2
2 ) as well as n → ∞). The disk

∆(z̃, q, n) in Σ̃(n)(z̃, δ2) ∩ B
Ñ (n)

(q, δ2
2 ) containing z̃ is nonempty, assuming z̃ ∈ S̃n is

chosen close enough to q, e.g., z̃ ∈ B
Ñ(n)

(q, δ2
3 ). For any pair of such disjoint such disks

∆(z̃, q, n), ∆(z̃′, q, n), we can put a stable minimal disk W (z̃, z̃′, n) ⊂ B
Ñ(n)

(q, δ2
2 ) such

that ∂W (z̃, z̃′, n) ⊂ ∂B
Ñ(n)

(q, δ2
2 ) and W (z̃, z̃′, n) separates ∆(z̃, q, n) from ∆(z̃′, q, n), see

Figure 5. A subsequence of the W (z̃, z̃′, n) converges as n → ∞ to a stable minimal disk
W (z̃, z̃′) ⊂ BR3(q, δ2

2 ) with ∂W (z̃, z̃′) ⊂ ∂BR3(q, δ2
2 ) and q ∈ W (z̃, z̃′).

Let F (q) be the component of W (z̃, z̃′) ∩ BR3(q, δ2
4 ) that contains q. By Theorem 7,

the disks Σ̃(n)(z̃n, δ2
4 ) with z̃n ∈ S̃n have uniform curvature estimates. Since these disks

are trapped by the disks W (z̃, z̃′, n) (here we take z̃, z̃′ converging to q), then the disk
F (q) is the limit of Σ̃(n)(z̃n, δ2

4 ) for some sequence z̃n ∈ S̃n. Furthermore, the property

13



that defines q implies that the number of distinct disks Σ̃(n)(z̃, δ2
4 ), z̃ ∈ S̃n, which are

converging to F (q), is diverging as n → ∞.
Let q1 be a point of ∂F (q). As before, q1 is a limit of points w̃n on Σ̃(n)(z̃n, δ2

4 ),
z̃n ∈ S̃n. We claim that the argument in the last paragraph can be applied exchanging z̃n

by w̃n. To insert stable minimal disks separating pieces of Σ̃(n) around w̃n we need intrinsic
neighborhoods of w̃n to be disks with boundary in the boundary of an appropriate extrinsic
ball; this holds because B

Σ̃(n)
(w̃n, 1) is δ2 weakly chord arc (for this last property to be

true it suffices to prove that BΣ(n)(wn, Rn) is δ2 weakly chord arc, where wn ∈ Σ(n) is the
point corresponding to w̃n in the original scale; this in turns follows from our weakly chord
arc hypothesis and from the inclusion BΣ(n)(wn, Rn) ⊂ BΣ(n)(yn, CnRn)). Putting new
stable minimal disks that separate Σ̃(n)(w̃n, δ2

4 ) and taking limits as before, a subsequence
of the disks Σ̃(n)(w̃n, δ2

4 ) converges to another stable minimal disk F (q1) ⊂ BR3(q1,
δ2
4 )

with ∂F (q1) ⊂ ∂BR3(q1,
δ2
4 ). This subsequence can be chosen so that F (q1) is an analytic

continuation of F (q).
Let F (q, 2) denote the analytic continuation of F (q) that we obtain by adding on F (q1)

for all q1 ∈ ∂F (q). Each point q2 ∈ ∂F (q, 2) is again the limit of points ṽn ∈ Σ(n)(w̃n, δ2
4 ),

so a subsequence of the disks Σ̃(n)(ṽn, δ2
4 ) converges to a stable disk F (q2) ⊂ BR3(q2,

δ2
4 )

with ∂F (q2) ⊂ ∂BR3(q2,
δ2
4 ). Again the subsequence is chosen so that F (q2) is an analytic

continuation of F (q, 2) and as before we obtain a similar minimal surface F (q, 3).
Continuing these analytic extensions of F (q), we obtain an infinite sequence F (q) ⊂

F (q, 2) ⊂ F (q, 3) ⊂ . . . of compact minimal surfaces. Since Cn → ∞, every F (q, k) is
a limit of disks in BΣ̃(n)(ỹn, 3

4Cn), for n large depending on k. By construction, F =⋃∞
k=1 F (q, k) is a complete embedded minimal surface in R3. Any compact domain on F

has infinite multiplicity as a limit of disjoint compact domains in Σ̃(n) for n sufficiently
large. Hence, statements 1 and 5 in Lemma 18 imply the universal cover of F is stable
and thus, F is a plane.

Let F̃ be the intersection of the plane F with the ball BR3(~0, 6). The flat disk F̃ is
the uniform limit of disks contained in Σ̃(n), and for n large, we can approximate F̃ by at
least two disjoint disks D1, D2 of Σ̃(n) with ∂Di ⊂ ∂BR3(~0, 6).

Since we began our construction of F̃ by taking limits of the Σ̃(n)(z̃, δ2
4 ), z̃ ∈ B

Σ̃(n)
(ỹn, Cn

2 )∩
S̃n, we can assume that Di∩S̃n 6= Ø for i = 1, 2 and for all n large enough (Cn → ∞). But
a segment of γ̃n ⊂ Σ̃(n)(~0, 5) ⊂ BR3(~0, 5) joins a point of D1 ∩ S̃n to a point of D2 ∩ S̃n.
This is a contradiction.
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2.3 The function aδ.

For our smooth compact disk Σ in the statement of Theorem 6 and for δ ∈ (0, 1
2), the

function
G(z) =

dΣ(z, ∂Σ)
R(z, δ)

is bounded on Σ − ∂Σ and is equal to 1 on a neighborhood of ∂Σ. To see this first note
that if for some ε > 0, p ∈ Σ − ∂Σ has distance at least ε from ∂Σ, then R(p, δ) is
greater than some positive constant that only depends on ε and Σ. This is because the
second fundamental form of Σ is bounded and so for ε′ < ε small, BΣ(p, ε′) is a graph of
small gradient over its projection on its tangent space and Σ(p, ε′

2 ) ⊂ BΣ(p, ε′

2 +ε′′), where
ε′′

ε′ → 0 as ε′ → 0. Since δ < 1
2 , then R(p, δ) is bounded from below outside of any small

ε-regular neighborhood of ∂Σ. On the other hand, since the geodesic curvature of ∂Σ and
the second fundamental form are both bounded, then the same argument shows for some
sufficiently small ε > 0, R(p, δ) is equal to dΣ(p, ∂Σ), when p ∈ Σ−∂Σ and dΣ(p, ∂Σ) < ε.
This proves that the function G is bounded.

Definition 4. Let Σ be as in the statement of Theorem 6 and let δ ∈ (0, 1
2). Then we

define:
aδ = sup

z∈Σ

dΣ(z, ∂Σ)
R(z, δ)

.

Lemma 11. Let Σ be as in the statement of Theorem 6, and let δ′ ∈ (0, 1
2). If aδ′ < c, c ∈

[2,∞), then Theorem 6 holds for Σ with δ = δ′

c and for any R0 ≤ 1.

Proof. Suppose aδ′ < c, R0 ≤ 1, δ = δ′

c and BΣ(x, R) ⊂ Σ − ∂Σ, where R ≤ R0. By
definition of aδ′ ,

aδ′ ≥
dΣ(x, ∂Σ)
R(x, δ′)

≥ R

R(x, δ′)
,

which implies that R(x, δ′) > R
c . By definition of R(x, δ′), Σ(x, δ′Rc ) ⊂ BΣ(x, 1

2
R
c ). Since

R
c < R, we have Σ(x, δ′Rc ) = Σ(x, δ′

c R) ⊂ BΣ(x, R
2 ).

By Remark 9, Σ(x, δ′

c R) is a compact embedded disk in BN (x, δ′

c R) with ∂Σ(x, δ′

c R) ⊂
∂BN (x, δ′

c R). Therefore, Theorem 6 holds for Σ with δ = δ′

c and for any R0 ≤ 1.

2.4 Locating the smallest scale which is not δ weakly chord arc.

The proof of the next lemma uses a standard technique for finding a smallest scale R1 for
which some property holds on a minimal surface. The property we are considering here is
that of being δ weakly chord arc. In this case we take the proof directly from the proof of
the similar Lemma 3.39 in [1].
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Lemma 12. Let Σ be as before and let δ ∈ (0, 1
2). Then there exists a point y ∈ Σ and a

number R1 > 0 so that:

1. aδR1 < 1
2dΣ(y, ∂Σ).

2. R(x, δ) > R1 for every x ∈ BΣ(y, aδR1).

3. BΣ(y, 5R1) is not δ weakly chord arc.

Proof. Recall the function G on Σ−∂Σ is defined by G(x) = dΣ(x, ∂Σ)/R(x, δ) and extends
to a bounded function which has a constant value 1 near ∂Σ. Thus, aδ = supΣ G is a finite
number. Choose y to be a point so that G(y) is greater than aδ

2 . Let d∂ = dΣ(y, ∂Σ). We
have

aδ

2
<

d∂

R(y, δ)
.

We now choose R1 = R(y, δ)/4 and we will show this definition of R1 satisfies the
statements in the lemma. This value of R1 gives the inequality aδR1 < 1

2d∂ , which is
statement 1 in the lemma. By definition of R1, R(y, δ) = 4R1 and by the definition
of R(y, δ) as a supremum, the ball BΣ(y, 5R1) is not δ weakly chord arc, which proves
statement 3.

By statement 1, aδR1 < 1
2d∂ , and so, BΣ(y, aδR1) ⊂ BΣ(y, d∂/2). So if we check that

statement 2 holds for points in BΣ(y, d∂/2), then statement 2 holds. If x ∈ BΣ(y, d∂/2),
then by the triangle inequality, d∂/2 ≤ dΣ(x, ∂Σ). This inequality, the definition of G and
the choice of y give the inequalities

d∂

2R(x, δ)
≤ G(x) < 2G(y) =

2d∂

R(y, δ)
.

Therefore, R(x, δ) > R(y, δ)/4 = R1. This completes the proof of statement 2 and the
lemma now follows.

2.5 The proof of Theorem 6: aδ2 is bounded independently of Σ.

We now prove Theorem 6. From the statement of Theorem 6, we may assume that Σ
is a geodesic disk of radius at most R0, where R0 satisfies CbR0 ≤ 1 and Cb is given by
Proposition 10. By Lemma 11, we just need to prove that aδ is bounded independently of
Σ for some fixed constant δ ∈ (0, 1

2).
Let δ = δ2, where δ2 is given Proposition 8. We now prove aδ is bounded from above

by Cb, where Cb is given in Proposition 10. Suppose there exists a Σ with aδ > Cb.
By the Lemma 12, there exist a point y ∈ Σ and an R1, such that:

1. BΣ(y, aδR1) ⊂ BΣ(y, 1
2dΣ(y, ∂Σ)). (Note this implies R1 ≤ R0.)
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2. R(x, δ) > R1 for every x ∈ BΣ(y, aδR1).

3. BΣ(y, 5R1) is not δ weakly chord arc.

By definition of R(x, δ) and statement 2, we have that BΣ(x, R1) is δ weakly chord
arc for every x ∈ BΣ(y, CbR1) ⊂ BΣ(y, aδR1). Since R1 ≤ R0, Proposition 10 implies that
BΣ(y, 5R1) is δ weakly chord arc, contradicting statement 3 above. This completes the
proof of Theorem 6.
Remark 2. The reader can easily check that the minimal lamination closure theorem is
true if one assumes the injectivity radius is locally bounded away from zero in the following
sense: one can cover N by balls such that the injectivity radius of M is bounded away
from zero in each ball.

3 Closure laminations for minimal surfaces of finite topol-

ogy.

In this section we prove two theorems on when the closures of complete embedded minimal
surfaces of finite topology have the structure of a minimal lamination. Our first theorem
will just depend on Theorem 4. In the case N has a flat metric, Meeks, Perez and Ros
[15] also proved this result.

Theorem 13. Let N be a Riemannian three-manifold of nonpositive sectional curvature.
If M is a complete embedded minimal surface of finite topology in N , then M has the
structure of a minimal lamination.

Proof. Suppose p ∈ N is a limit point of M in N . Since a neighborhood of p embeds in
a homogeneously regular manifold, Remark 2 implies that we just need to prove that the
points of M that enter some neighborhood of p have injectivity radius greater than some
ε. Otherwise, we can find a divergent sequence of points pn ∈ E, where E is one of the
annular ends of M , the points pn converge to p and the injectivity radius of M at pn is
going to zero as n → ∞. Since N has nonpositive sectional curvature and M is minimal,
then M has nonpositive curvature. So, there exist closed embedded geodesic loops γn

based at pn of length 2 · IM(pn) which cannot bound disks on M by the Gauss-Bonnet
formula. Hence, the loops γn ⊂ E represent generators of the fundamental group of E. In
particular, the compact annulus in E bounded by γ1 ∪ γn has nonpositive total curvature
bounded from below by −4π. This means that E has finite total curvature.

However, note that the second fundamental form and the Gaussian curvature of M
near pn is becoming unbounded as n → ∞. A blow-up argument on the scale of curvature
(see, for example, the statement of the Local Picture Theorem on the Scale of Curvature
in [13]) shows that the absolute total curvature of BM (pn, 1) is greater than 2π for n large
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(since a complete minimal surface in R3 that is not flat has absolute total curvature at least
4π). But this implies that the absolute total curvature of E is infinite, which contradicts
that E has finite total curvature. This completes the proof of Theorem 13.

For the proof of our next result we need to invoke not only Theorem 4 but also a
blow-up on the scale of the injectivity radius, which is Theorem 11.1 in [13]. Since we
will need its precise statement, we now give it for the readers convenience. The state-
ment of the theorem includes the term minimal parking garage structure on R3. Roughly
stated, a parking garage structure is a limit object for a sequence of embedded minimal
surfaces that converge to a minimal foliation L of R3 by parallel planes with singular set
of C1-convergence being a locally finite set S(L) of lines orthogonal to the planes of L,
along which the limiting surfaces have the local appearance of a highly sheeted double
multigraph; the set of lines in S(L) are called the columns of the parking garage structure.
For example, the sequence of homothetic shrinkings 1

n H of a vertical helicoid H converges
to a minimal parking garage structure of R3 consisting of the minimal foliation L of R3

by horizontal planes with singular set of convergence S(L) being the x3-axis. We note
that the limit minimal parking garage structures that we will see in our application of
this result arise from limits of minimal surfaces of genus zero, and so, by statement 5.4
in the theorem below, will have exactly two columns. The formal definition of minimal
parking garage structure is given in [13] but some of the related language, such as columns
of a parking garage structure was first suggested by Matthias Weber, based on the paper
by Traizet and Weber (also see the section 7 of our paper [17] for this technique). In
their paper, they use this structure to produce certain 1-parameter families of complete
embedded periodic minimal surfaces in R3 which converge to a minimal parking garage
structure of R3. Their examples are obtained by analytically untwisting the limit minimal
parking garage structure through an application of the implicit function theorem.

Theorem 14 (Local Picture on the Scale of Topology). Suppose M is a complete
embedded minimal surface with injectivity radius zero in a homogeneously regular three-
manifold N . Then, there exists a sequence of points pn ∈ M and positive numbers εn → 0
such that the following statements hold.

1. For all n, the component Mn of BN (pn, εn) ∩ M that contains pn is compact with
boundary ∂Mn ⊂ ∂BN(pn, εn).

2. Let λn = 1/IMn(pn), where IMn denotes the injectivity radius function of M restricted
to Mn. Then, λnIMn ≥ 1 − 1

n+1 on Mn, and limn→∞ εnλn = ∞.

3. The metric balls λnBN (pn, εn) of radius λnεn converge uniformly to R3 with its usual
metric (so that we identify pn with ~0 for all n).

Furthermore, one of the following three possiblities occurs.
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4. The surfaces λnMn have bounded curvature on compact subsets of R3 and for any
k ∈ N, converge Ck on compact subsets of R3 to a connected properly embedded
nonsimply connected minimal surface M∞ in R3 with IM∞ ≥ 1 on M∞, ~0 ∈ M∞
and IM∞(~0) = 1.

5. The surfaces λnMn converge to a limiting minimal parking garage structure of R3 con-
sisting of a foliation L by planes and columns S(L), and:

5.1 S(L) contains a line L1 orthogonal to the planes in L which passes through the
origin.

5.2 S(L) contains a parallel line L2 of distance 1 from L1.

5.3 All of the lines in S(L) have distance at least 1 from each other.

5.4 If there exists a bound on the genus of the surfaces λnMn, then S(L) consists of
two components L1, L2 with associated limiting double multigraphs being oppo-
sitely handed.

6. The surfaces λnMn converge to a singular minimal lamination L of R3, and

6.1 There exists R0 > 0 such that the surfaces (λnMn)∩B(~0, R0) do not have bounded
genus.

6.2 The sublamination P of L consisting of planes is nonempty.

6.3 The singular set S(L) of C1-convergence of {λnMn}n to L is a closed set of R3

which is contained in ∪P∈PP .

6.4 Every plane in P intersects S(L) in an infinite set of points, which are at least
distance 1 from each other in the plane.

We now state our final theorem.

Theorem 15. Let N be a Riemannian three-manifold which is a product ∆×R, where ∆
is a Riemannian surface. If M is a complete embedded minimal surface of finite topology
in N , then:

1. M has the structure of a minimal lamination.

2. Suppose ∆ is a homogeneously regular surface and has nonnegative curvature. If M
is not properly embedded in N , then ∆ is flat and M is totally geodesic in N .

3. If ∆ is a compact surface of nonnegative curvature, then M has bounded curvature.
Furthermore, if M is not totally geodesic in N or ∆ is not a flat torus, then M is
properly embedded in N and M has linear area growth. (Linear area growth means
that for t ≥ 1 and for any a ∈ R, the area A(t) of M ∩ (∆ × [a − t, a + t]) satisfies
c1t ≤ A(t) ≤ c2t, for some positive constants c1, c2.)
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Proof. Let M be a complete embedded minimal surface of finite topology in N = ∆× R.
In order to prove that the closure M of M in N has the structure of a minimal lamination
L with M as a leaf, it is sufficient to show that M has injectivity radius locally bounded
away from zero in N (see Remark 2).

Arguing by contradiction, suppose that there exists a point p ∈ N = ∆ × R and a
sequence of points pn ∈ M converging to p such that IM(pn) converges to zero. Thus, we
may also assume that:

1. IM (pn) < 1
2n . In particular, there exists an embedded geodesic loop γn of length less

than 1
n based at pn or there exists a geodesic ray βn of length IM(pn) starting at pn

and ending at a conjugate point of pn along βn.

2. The curves γn lie in a fixed annular end representative E of M .

3. Length(γn+1) < 1
nLength (γn).

4. Furthermore, the points pn can be chosen to be blow-up points for the scale of the
injectivity radius. This just means that the points pn can be taken to satisfy the
conditions for the points pn given in the statement of Theorem 14.

We let h : N = ∆ × R → R denote the height function, which restricts to a harmonic
function on M . We will refer to the flux of the gradient of h across a simple closed curve
on M as the vertical flux of the curve.

Theorem 14 describes the geometry of the local blow-up picture M̃(n) of M on the
scale of the injectivity radius in an intrinsic/extrinsic neighborhood of pn for n large.
Suppose the bounded curvature hypothesis in statement 4 of Theorem 14 holds for the
scaled surfaces M̃(n) around pn, then a limit M∞ of the M̃(n) is a properly embedded
nonsimply connected minimal surface in R3. Since outside a compact subset of M the
surface has genus zero, the blown-up limit M∞ has genus zero. By the classification
results in [16] for such M∞, on this scale, the surface M has the appearance of either a
catenoid or a two limit end genus zero minimal surface near pn.

Note that for n large, there are no geodesic rays βn, as in statement 1 above, since
a subsequence of the βn would give rise to a limit geodesic on M∞ of length 1 with a
conjugate point. This is impossible since the curvature of M∞ is nonpositive.
Case 1. The surface M∞ is a catenoid.

Observe that the γn can not bound a disk D(n) on E. For then the harmonic height
function has an interior maximum or minimum on D(n). Also, observe that M∞ must
have a horizontal axis, where we use coordinates on R3 so that the notion of horizontal is
that induced by the height function h. If not, the vertical flux of the waist circle γ is not
zero. Then the curve γn has nonzero vertical flux as well. Since all of the γn lie on the
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same annular end E, they have the same vertical flux. But the length of γn is an upper
bound for the vertical flux and these lengths converge to zero, a contradiction.

Now, γn and γm for m > n, bound a compact annulus E(n, m) on E and, again the
height function would have an interior maximum on E(n, m). This is because near each
of the two boundary curves of E(n, m), one sees a neighborhood of γ on the horizontal
catenoid M∞. This is a contradiction.
Case 2. The surface M∞ is a two limit end surface of genus zero.

In this case we remark that the planar ends of M∞ can not be horizontal. For, were
this the case, one can find a horizontal plane that intersects M∞ in a simple closed curve
β with nonzero vertical flux, which is impossible from the similar argument that we gave
in the case M∞ was a catenoid. Hence, the ends of M∞ are not horizontal. Let β be a
planar simple closed curve of M∞ separating the two limit ends. Let βn be curves on E,
blowing-up to β and note that each of the limit ends of M∞ bounded by β has points
above and below the h-values of β. Clearly the βn do not bound disks D(n) on M by the
maximum principle. Thus, βn and βm, m > n, bound a compact annulus E(n, m) ⊂ E.
For m, n large, there exist simple closed curves on E(n, m) near βn and near βm which
upon blowing-up, have points higher and lower than the corresponding blow-ups of βn or
βm (the planar ends of M∞ are not horizontal). Hence, the height function has an interior
maximum on E(n, m), a contradiction.

This concludes the case where the bounded curvature hypothesis in statement 4 of
Theorem 14 holds for the scaled surface M̃(n) around pn.

Now assume the curvature is not bounded. By Theorem 14, we have that the surfaces
λnMn converge either to a minimal parking garage of R3 or to a singular minimal lamina-
tion of R3. The last case is not possible by item 6.1 in Theorem 14 and by the fact that
M∞ has finite topology. Thus, λnMn converge to a minimal parking garage M∞ of R3,
which has two oppositely oriented columns by item 5.4 of Theorem 14.

We first note that the foliation associated to M∞ is not by horizontal planes. If
not, then consider a sequence of simple closed curves β̃n on the surfaces λnMn (see the
statement of Theorem 14), which start at p̃n = λnpn(= ~0) on a forming multigraph
corresponding to L1 (equals column 1) and then travel along level 1 from L1 to L2 (equals
column 2), then up column 2 to level 2, back to column 1 along level 2 and then down to
the starting point p̃n on column 1 level 1. The curves β̃n can be taken to have length close
to 2. Choose n large so that the height function is at most 1

4 in modulus on β̃n. Similarly
construct such curves α̃n starting near height 1 (above p̃n) with height variation less than
1
4 . Let αn and βn be curves on M blowing-up to α̃n and β̃n. Notice that neither αn nor βn

bounds a disk on M by the maximum principle (each curve separates the forming parking
garage into two components, each with sheets above or below the curve). The curves αn

and βn bound an annulus E(n) on E. Clearly, there is a horizontal closed curve on E(n)
with nonzero vertical flux (the existence of a horizontal closed curve on E(n) with nonzero
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vertical flux follows from consideration of the values of the height function along αn ∪ βn

together with the height variation that we are assuming for the curves α̃n and β̃n). As
before, this is impossible. Hence, the parking garage structure is not horizontal.

Now in the nonhorizontal case, we construct the curves α̃n, β̃n as before, which now
are close to tilted planes. Again the blow-down curves αn and βn do not bound disks, so
one has the annulus E(n) with boundary components αn, βn. In any fixed size tubular
neighborhood of βn, there exist simple closed curves on either side of βn which upon
blowing-up, have points higher and lower than the corresponding blow-up of βn ∪ αn

(the planar ends of M∞ are not horizontal). Hence, the height function has an interior
maximum on E(n), a contradiction. This contradiction completes the proof of statement
1 of the theorem.

We now prove statement 2 in the theorem. Suppose M is not proper in N = ∆ × R,
where ∆ is a homogeneously regular Riemannian surface and has nonnegative curvature.
Note that ∆ is complete in this case, since part of the definition of a homogeneously
regular manifold states that ∆ has positive injectivity radius. Since M has the structure
of a minimal lamination by statement 1, we know that M has a limit leaf L. Then,
by statement 1 of Lemma 17 in the Appendix, the universal cover L̃ of L is a complete
stable minimal surface in N . Since N has nonnegative Ricci curvature, Fischer-Colbrie
and Schoen’s theorem [9] says that L̃, and hence, also L, is totally geodesic in N and the
Ricci curvature of N vanishes along the normal to L.

If ∆ has a flat metric, then a slight modification of the proof we gave of Theorem 5 in
section 2 implies M has positive injectivity radius. In this case, the leaves of the lift of the
nontrivial minimal lamination M to the universal cover R3 of N have positive injectivity
radius, which implies the lifted lamination consists of flat leaves (Theorem 2). Therefore,
M is flat and totally geodesic in N .

Assume now that ∆ is not flat and so has some point of positive curvature. It follows
that we may assume, after possibly lifting to a two-sheeted cover, that ∆ is simply con-
nected. Since L is totally geodesic in N and N is not flat, then Lemma 17 at the end
of this section implies that L is γ × R for some geodesic in ∆ or L = ∆ × {t0} for some
t0 ∈ R.

We now prove that L can not be of the form ∆× {t0}. In a fixed size closed one-sided
neighborhood N(δ) of L, there is a component Σ of M ∩N(δ) with ∂Σ = Σ∩∂N(δ), which
is a graph (one uses here that for δ small, the vertical projection π : Σ → L = ∆×{t0} is a
quasi-isometry; this follows from the curvature estimate in the last statement of Theorem
4 and the fact that the projection is injective on ∂Σ and then one applies the topological
result in Lemma 1.4 of [18]).

We now show that Σ cannot exist with a proof similar to the proof of the Halfspace
Theorem in [10]. Note that the graph Σ is proper in ∆× [t0, t0 + δ] (we are assuming here
that Σ lies above ∆ × {t0}). After a possible downward translation of Σ, we may assume
that Σ limits to ∆×{t0}. For some positive c less that δ, there exists a compact embedded
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minimal annulus A with one boundary component ∂ at height t0 + c and the other one
at height t0 and A is disjoint from Σ. After replacing δ by c, we may assume that δ = c.
Let X be the closure of the unbounded component of ∆ × [t0, t0 + δ] − A. Since the top
boundary curve ∂ of A is homologous to infinity in X and ∂X is a good barrier for solving
Plateau type problems in X, the curve ∂ bounds a complete properly embedded least area
surface Γ. Since ∆ × [t0, t0 + δ] is simply connected, then the surface Γ is orientable by
separation properties. By a result of Fischer-Colbrie [8], Γ has finite total curvature and
so it is parabolic. It follows that the bounded harmonic height function on Γ must have
the constant value δ, and so is contained in ∆× {t0 + δ}, which is clearly impossible since
Γ would then not be contained in X near ∂Σ.

An appropriate modification of the above ”halfspace theorem” proof also shows that
the limit leaf L can not be of the form γ × R, γ a geodesic of ∆, as follows.

Passing to a covering space, we can assume γ is diffeomorphic to R. Consider a one-
sided closed δ-normal interval bundle Nδ(L) that submerses to ∆ × R, with the induced
metric and induced lamination. Then Nδ(L) is homeomorphic to (γ × R) × [0, δ], with a
flat submanifold L = (γ×R)×{0} and L(δ) = (γ×R)×{δ} having mean curvature vector
pointing out of Nδ(L). By statement 4(b) in Theorem 4, for a small choice of δ, we may
assume that M ∩ Nδ(L) has bounded curvature. Again for δ sufficiently small, we may
assume that each component of L∩Nδ(L) is a normal graph of bounded gradient over the
zero section which is L. Let C be such a component which is a graph over a connected
domain LC of L. Let LC(δ) be the part of L(δ) which is also a graph over LC and let
L′

C(δ) = L(δ)− LC(δ). Then under normal projection to L, L′
C(δ)∪ C is quasi-isometric

to the flat plane L. Hence, C is a parabolic Riemann surface with boundary. Since L

is totally geodesic, the distance function of C to L is a bounded positive superharmonic
function which has values in its interior which are smaller than its constant value δ on the
boundary of the domain. This is a contradiction and completes the proof of statement 2.

We now prove statement 3. It follows from statement 2 that M and ∆ have zero
curvature when M is not proper in N , and so M has bounded curvature in this case.
When M is properly embedded in N , then the Bounded Curvature Theorem, proved by
the authors in [17], states that M has bounded curvature (the hypotheses of this theorem
are that M be a properly embedded minimal surface of finite genus in the product of a
closed Riemannian surface with R). Thus, the first sentence of statement 3 is established:
M has bounded curvature. We also have shown the first part of the second statement: if
M is not totally geodesic in N or ∆ is not a flat torus, then M is properly embedded in
N .

The authors’ Linear Area Growth Theorem in [17] states that a properly embedded
minimal surface of bounded curvature in ∆ × R (here ∆ can be any closed Riemannian
surface) has linear area growth. Thus, M has linear area growth.
Remark 16. The hypothesis in statement 2 in Theorem 15 that ∆ is a homogeneously
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regular manifold of nonnegative curvature probably can be weakened to the hypothesis
that ∆ has nonnegative curvature. First note that the completion of a general Riemannian
surface ∆ product with R is essentially a manifold with boundary in which a limit leaf L of
M should be complete and totally geodesic. Also, the property that ∆ is homogeneously
regular also does not play as key a role as it might appear in the proof, since L has total
curvature at most 2π and so a divergent sequence of small ε-disks converges to a disk
which is flat and so is homogeneously regular. These are technical issues which we avoid
by assuming ∆ is homogeneously regular (which implies ∆ is also complete).

We also remark that Meeks, Perez and Ros [14] have conjectured that a version of
Proposition 8 holds for minimal surfaces with any fixed finite genus g. If the conjecture is
true, then it should follow from their work that the limit set L(M) of a complete embedded
finite genus minimal surface M in a Riemannian three-manifold N would be a minimal
lamination whose limit leaves have the property that their universal covers are stable. In
particular, if the curvature of N is positive and the conjecture holds, then a complete
embedded finite genus minimal surface in N would be properly embedded (in particular,
there are no complete simply connected stable minimal surfaces in such an N). This last
result fails if N only has positive scalar curvature, even in the case N is topologically the
three-sphere and the surface is an annulus.

Lemma 17. Let Σ be a complete totally geodesic surface in M×R, where M is a connected
surface which is not flat. Then Σ is of the form α × R where α is a geodesic in M or
Σ = M × {t} for some t ∈ R.

Proof. If Σ is vertical and totally geodesic, then it is clearly of the form α × R for some
geodesic α of M . So, assume that there is a point q = (p, t) ∈ Σ ⊂ M × R, where the
tangent space is not vertical. Let vq be a unit tangent vector to Σ at q which is orthogonal
to the horizontal geodesic hq ⊂ Σ at height t. Let γq : R → M × R be the unit speed
geodesic γq(t) = (γM

q (t), γR
q (t)) with γ ′

q(0) = vq. Note that γq ⊂ Σ.
Since Σ is totally geodesic in M×R, parallel translation ηq(t) along γq of a unit tangent

vector ηq to hq at q is a vector field along γq ⊂ Σ which stays normal to γq and tangent to
Σ. Note that ηq is a horizontal vector at q in Tp(M × R) and since γM

q (R) × R is totally
geodesic and vertical, then ηq(t) is horizontal for all t. It follows that the set of horizontal
geodesics {hq | q ∈ Σ} in Σ are orthogonal to the set of geodesics {γq | q ∈ Σ∩ (M ×{t})}
and the same is true of their projections to M . It now easily follows that M has two
orthogonal foliations by geodesics which implies M is flat. This completes the proof of the
lemma.
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4 Appendix: Stability of the leaves in a minimal lamination.

In this section, we collect several general results on the stability of certain leaves of a
minimal lamination that we apply in this paper. Many of the arguments in the following
lemma appear in our earlier paper [18] on the uniqueness of the helicoid but are difficult
to find and appear there only in the R3 setting. The R3 setting is simpler because its
curvature is nonnegative and the only stable complete minimal surface in R3 is a plane
(see [7, 9, 19]).

Some of the difficulty that appears in the proof of the next theorem arises from the
fact that a compact minimal surface can be unstable, while its universal cover is stable.
For example, consider a compact surface M of constant curvature −1, and a small warped
product perturbation of the product metric on M ×R, so that M ×{0} is totally geodesic
and the unit normal vectors to M ×{0} have positive Ricci curvature; then this surface is
unstable but the universal cover of M ×{0} is a stable minimal surface. This example was
pointed out to us by Richard Schoen. In a related problem one knows that the operator
−∆ + aK (for a = 2, this is the the negative of the stability operator in R3) on any of
the Scherk doubly-periodic minimal surfaces in R3 is not positive for any a ∈ (0,∞) but
for any sufficiently small a ∈ (0, 1), the operator −∆ + aK is positive when lifted to its
universal cover; here, K denotes the Gaussian curvature function (see section 10.3 of [13]
for details).

Before stating and proving the next lemma, we make a few comments concerning the
stability of a minimal surface Σ in a three-manifold N and the holonomy group GL of a
leaf L of a minimal lamination L of N . First note that stability of Σ is defined in terms
of stability of all smooth compact subdomains ∆ ⊂ Σ. If Σ is two-sided, then it has a
unit normal vector field and so, stability of Σ is reduced to the existence of a positive
Jacobi function; hence, a covering space of a stable two-sided minimal surface is again
stable. However, in the flat three-manifold T×R with T = R2/Z2, Scherk’s nonorientable
minimal surface with total curvature −2π is stable but its oriented two-sheeted cover is
unstable. On the other hand, if Σ ⊂ N is unstable, then it follows immediately from the
definition of stability that any finite cover of Σ is unstable, independent of whether or not
the surface is two-sided.

In trying to determine whether or not a limit leaf L of L is stable, it is essential to
understand some basic properties of the holonomy group GL. For the sake of concreteness,
we describe the appropriate picture for understanding this question. Let ∆ ⊂ Σ be a
smooth compact subdomain (by the above discussion we may assume that L is two-sided
and orientable), let ∆ε denote a small closed regular ε-neighborhood with coordinates
∆ × [−ε, ε] induced by the exponential map on the closed ε-normal interval bundle to ∆.
Let Lε be the induced lamination. Fix a base point p ∈ ∆ and let F = (p × [−ε, ε]) ∩ Lε

be the fiber over p. Assume that ε is chosen sufficiently small so that its leaves are graphs
or multigraphs over ∆ = ∆ × {0}. Given a representative loop of γ an element [γ] of the
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fundamental group of ∆ based at p, then for q ∈ F sufficiently close to p = p × {0}, one
can vertically lift γ to Lε beginning at q to obtain an arc with end point H̃(γ)(q) ∈ F .
This mapping H̃(γ) gives rise to an injective map from any sufficiently small neighborhood
N(p) ∈ F of p onto a small neighborhood W (p) ⊂ F : H̃(γ) : N(p) → W (p). Note that
H̃(γ)(p) = p and the choices of N(p), W (p) are not uniquely determined, but rather we
consider H̃(γ) to be defined on equilavence classes of small neighborhoods of p in F . Also
note that there is a natural ordering of the points of the fiber F given by the ordering
of their t-coordinates and H̃(γ) preserves this ordering. Let N+(p) denote the points in
N(p) with positive t-coordinate and similarly define W+(q). If N+(p) is discrete, then
it is naturally order-preservingly homeomorphic to the negative integers Z−, where we
consider the limit point p to be −∞. Similarly, we can indentify W (q) with an interval of
(−∞, j) ⊂ Z, and for some n ∈ Z, H̃(γ)(k) = k + n, where k + n ∈ W (q) lies n points
(above if n is positive, below if n is negative) from k ∈ Z = N(q). From this discussion, we
obtain rather easily an onto representation H : π1 (∆, p) → G (H : π1(∆, p) → G+ in the
one-sided case), called the holonomy (one-sided holonomy) representation of fundamental
group for the domain ∆ which is associated to the lamination L, where G is a group
of germs of order-preserving homeomeorphisms of the fiber F which fix p. From our
discussion, it follows that when N+(p) is discrete and G+ is nontrivial, then G+ can be
identified with the set of integers Z.

Lemma 18 (Stability of Leaves Lemma). Suppose L is a minimal lamination of a
Riemannian three-manifold N . Then the following statements hold:

1. If L is a limit leaf of L, then the universal cover L̃ of L is a stable minimal surface.

2. If M is a leaf of L and L is a leaf of the sublamination L(M) ⊂ L of limit points of
M such that the holonomy representation of L on a side containing M has subexpo-
nential growth (amenable holonomy group) on compact subdomains of L, then L is
stable. (For example, if the holonomy representation has image group isomorphic to
a finitely generated abelian group.)

3. If M is a leaf of L and L is a leaf of the sublamination L(M) ⊂ L and there is an
open set OL containing L such that OL ∩ L(M) = L, then L is stable.

4. If N has positive Ricci curvature, then L has no limit leaves. If N has nonnegative
sectional curvature and L is a complete limit leaf of L, then L is simply-connected
or 1-connected, totally geodesic and stable.

5. If {Mn}n is a sequence of embedded minimal surfaces in N that converge to L and
their convergence to a nonlimit leaf L of L is of multiplicity greater than one, then
L is stable.
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Proof. Let L be a limit leaf of L. An argument given in the proof of Lemma 1.1 in [18]
shows that the universal covering L̃ of L, considered to be an immersed minimal surface
in N , is stable. For the sake of completeness, we now give a different argument from the
one given in Lemma 1.1 in [18] to show L̃ is stable.

Let D be a smooth compact simply connected domain in the universal cover L̃ of L.
We first show that there is a positive Jacobi function on the interior of D. Let Nε(D) be
an ε-normal bundle to the map of D into N that submerses to N under the exponential
map. We will consider D to be the zero section of Nε(D). Also, note that we can pull back
the metric of N to Nε(D) as well as the lamination L, giving rise to a lamination L(D)
of Nε(D). Note that D is a limit leaf of L(D). Since D is simply connected, there exist
a sequence of leaves Dn of L(D) which converge to D and which for n large are disjoint
positive normal graphs. Fix a point p in the interior of D and normalize the graphing
functions fn of Dn, by dividing by fn(p), to obtain a sequence of functions Fn : D → (0,∞)
with Fn(p) = 1. Standard elliptic theory implies that a subsequence of the Fn restricted
to the interior of D converges to a positive Jacobi function fD. Now take an exhaustion
of M by compact domains D(n) containing D with associated positive Jacobi functions
f |D(n) defined on their interiors. Again a subsequence of these Jacobi functions converges
uniformly on compact subsets of L̃ to a positive Jacobi function of L̃, which implies L̃ is
stable. This proves item 1.

We now consider item 2. Suppose L is a limit leaf of M in L and L is not stable.
By the discussion that follows, this property of instability just means that there exists a
smooth compact subdomain D ⊂ L such that the first eigenvalue of the stability operator
∆ + |A|2 + Ric is negative.

Since we are assuming that D is strictly unstable, we can also assume D 6= L and
D has smooth nonempty boundary. Also, since finite covers of unstable domains are
unstable, we may assume that both L and N are orientable. By item 1, we may assume
D is nonsimply connected. Since D is a nonsimply connected oriented surface of some
finite genus, there exist a finite number of pairwise disjoint smooth compact arcs α1, ..., αk

in D which intersect ∂D orthogonally at their end points and such that upon cutting D
along them, we obtain a surface whose Riemannian completion is a compact disk D. The
boundary of D consists of a finite number of simple arcs meeting orthogonally at their end
points and with two copies each of the arcs αi appearing on ∂D.

If Π: D̃ → D is the universal cover of D, then we can lift the interior of D to D̃ and
consider D to be embedded in D̃. Under the action of π1(D) on D̃, we can also consider
the π1(D)-orbit of D to be a tiling of D̃.

We now define D(1) = D and inductively define, for n ∈ N, the domain D(n) to be
the closure of the union of collection of disks in the tiling which are adjacent to the disks
in D(n − 1). Let G be holonomy group of D coming from M and let σ : π1(L) → G be
the associated representation. Let D̂ denote the covering space of D corresponding to the
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kernel of representation and let D̂(n) denote the quotient domain D(n)/G ⊂ D̂ = D̃/G.
It is straightforward to check that, under our assumption that the holonomy of D has
subexponential growth, as n → ∞, the ratio of the area of D̂(n)− D̂(n− 1) to the area of
D̂(n − 1) converges to zero.

Let Lε denote the induced lamination of a small normal ε-regular neighborhood D ×
[−ε, ε] ⊂ N of D. Since the lifted minimal laminationLε to D̂×[−ε, ε] has trivial holonomy,
the arguments in the proof of item 1 apply to show that D̂ has a positive Jacobi function.
So, it remains to prove that D̂ is unstable, thereby giving the desired contradiction.

Consider the first eigenfunction f of the stability operator for D with zero boundary
values. Since D is unstable, then, to second order, the associated variation of the area
A(t) of the interior of D in N decreases area at certain nonzero rate r = A′′(0) at time
t = 0. Let fn be the lifted function defined on D̂(n) and note that it decreases the area
of D̂(n) to second order at the rate r multiplied by the number of fundamental regions in
D̂(n). After defining cut off functions on a fixed subcollection of pairwise disjoint regular
neighborhoods of the arcs of ∂D not contained in ∂D̃, we know that the new normal
variation V with zero boundary values increases the area of D ⊂ D̃ to second order by a
fixed rate at t = 0.

These just referred to cut off functions for D give rise via the action of π1(D) to cut
off functions for fn, thereby, yielding a global function Fn which is zero along ∂D̂(n) and
equals fn on any component of D̂(n) − D̂(n − 1).

For each fundamental domain ∆ in D̂(n) − D̂(n − 1), the related normal variation of
area of ∆ induced by Fn possibly increases area to second order by a rate that is bounded
from above, independent of n and ∆. However, the second order rate of decrease of area
of a domain ∆ in D(n − 1) by Fn is the same as the rate given by f which is constant.
Since, for n large, the area of D̂(n)− D̂(n−1) divided by the area of D̂(n−1) is arbitrarily
small, then the variation Fn of D̂(n) decreases area for n large, contradicting that D̂ is
stable. This contradiction proves the second statement in the lemma.

Now suppose that M is a leaf of L, L is a leaf of L(M) and L is an isolated limit leaf
of L(M) in the sense that there is an open set OL containing L such that OL∩L(M) = L.
In this case M ∩ (OL − L) is properly embedded in OL − L. Consider L ∪ (M ∩ OL) to
be a minimal lamination of OL and note that the holonomy group of this new minimal
lamination is isomorphic to Z or is trivial on the side with M in this case. Hence, item 2
in the lemma implies L is stable, which proves item 3.

The first part of item 4 follows immediately from item 1 that the universal cover L̃

is stable, and the result that such an N with positive Ricci curvature does not admit
a complete stable orientable minimal surface (see [9] and also, see the arguments at the
end of our proof of Theorem 15). If N has nonnegative sectional curvature, then the
stable universal cover L̃ is totally geodesic [9]. This means that L̃ has a complete metric
of nonnegative curvature, and so it is conformally C. If L is not simply connected, the
orientable cover of L is an annulus with fundamental group Z, and so item 2 implies L is
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stable. This completes the proof of item 4.
The proof of item 5 is standard. Given a compact domain D ⊂ L, we wish to show

that it is stable when the Mn converge to it with multiplicity greater than 1. After lifting
to a finite cover of a small regular neighborhood of L, we may assume that everything is
orientable, which means that we just need to show that L has a positive Jacobi function.
Let Nε(D) be a small normal regular neighborhood of D. For n large, the components
of Mn ∩ Nε(D) are, by embeddedness of both Mn and D, small normal graphs over D.
Taking differences of two such graphing functions and normalizing the difference to be 1
at some point p in the interior of D, and then taking limits, produces a positive Jacobi
function in the interior of D. As in the proof of item 1, we conclude that L also has a
positive Jacobi function. This completes the proof of the lemma.
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