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Abstract

We prove that for every nonnegative integer g, there is a bound on the number
of ends that a complete embedded minimal surface M ⊂ R3 of genus g and finite
topology can have. This bound on the finite number of ends when M has at least two
ends implies that M has finite stability index which is bounded by a constant that
only depends on its genus.
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1 Introduction

Let M be the space of connected properly embedded minimal surfaces in R3. This is the
third in a series of papers whose goal is to describe the topology, geometry, asymptotic
behavior and conformal structure of the examples in M with finite genus. The focus of
this paper is to give an upper bound on the topology and index of stability for a surface
M ∈ M having finite topology, solely in terms of the genus of M .

There are three classical conjectures which attempt to describe the topological types
of the minimal surfaces occurring in M.

Conjecture 1 (Finite Topology Conjecture I (Hoffman and Meeks))
A noncompact orientable surface with finite genus g and a finite number of ends k > 2
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findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the NSF.

†Research partially supported by a MEC/FEDER grant no. MTM2004-02746.
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occurs as the topological type of an example in M if and only if k ≤ g + 2. A minimal
surface in M with finite genus and two ends has genus 0 and is a catenoid.

Conjecture 2 (Finite Topology Conjecture II (Meeks and Rosenberg))
For every positive integer g, there exists a Σg ∈ M with one end and genus g, which is
unique up to congruences and homotheties. Furthermore, if g = 0, such a Σg is a plane
or a helicoid.

Conjecture 3 (Infinite Topology Conjecture (Meeks))
A noncompact orientable surface of infinite topology occurs as the topological type of an
example in M if and only if it has at most two limit ends, and when it has one limit end,
then it has infinite genus.

For a complete discussion of these conjectures and related results we refer the reader
to the recent surveys [23] by Meeks and [25] by Meeks and Pérez. However, we make
a few brief comments on what is known concerning these conjectures and which will be
used in the proof of the main theorem of this paper. A theorem by Collin [9] states that
if M ∈ M has finite topology and at least two ends, then M has finite total Gaussian
curvature. This result implies that such a surface M is conformally a compact Riemann
surface M punctured in a finite number of points and M can be defined in terms of
meromorphic data on its conformal compactification M . Collin’s Theorem reduces the
question of topological obstructions for M ∈ M of finite topology and more than one end
to the question of topological obstructions for complete embedded minimal surfaces of
finite total curvature in R3. For example, if M is a complete embedded minimal surface
in R3 with finite total curvature, genus g and k ends, then M is properly embedded in R3

and the Jorge-Meeks formula [20] calculates its total curvature to be −4π(g + k− 1). The
first topological obstructions for complete embedded minimal surfaces M of finite total
curvature were given by Jorge and Meeks [20], who proved that if M has genus zero, then
M does not have 3, 4 or 5 ends. Later this result was generalized by López and Ros [22]
who proved that the plane and the catenoid are the only genus zero minimal surfaces of
finite total curvature in M. About the same time, Schoen [37] proved that a complete
embedded minimal surface of finite total curvature and two ends must be a catenoid.

The existence theory for properly embedded minimal surfaces with finite total curva-
ture was begun by Costa [11] and Hoffman-Meeks [17], with important theoretical advances
by Kapouleas [21] and Traizet [38]. A recent paper by Weber and Wolf [41] makes the
existence assertion in Conjecture 1 seem likely to hold, although their results actually fall
short of giving a proof of embeddedness for their examples.

Concerning Conjecture 2, a recent result by Meeks and Rosenberg [30] states that the
plane and the helicoid are the only properly embedded simply connected minimal surfaces
in R3. They also prove that if M ∈ M has finite positive genus and just one end, then
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it is asymptotic to the end of the helicoid and can be defined analytically in terms of
meromorphic data on its conformal completion, which is a closed Riemann surface. This
theoretical result together with the recent theorems developed by Weber and Traizet [39]
and by Hoffman, Weber and Wolf [19] provide a theory on which a proof of Conjecture 2
might be based.

In the case of infinite topology surfaces, there are two important topological obstruc-
tions. Collin, Kusner, Meeks and Rosenberg [10] proved that an example in M cannot
have more than two limit ends. In our previous paper [28], we proved that an example
in M with one limit end cannot have finite genus. This result depends on our paper [27]
where we presented an important descriptive theorem for minimal surfaces in M with two
limit ends and finite genus. The study of two limit end minimal surfaces is motivated
by a one-parameter family of periodic examples of genus zero discovered by Riemann [34]
which he defined in terms of elliptic functions on rectangular elliptic curves.

A priori, one procedure to obtain surfaces in M with finite genus and infinite topology
is as limits of sequences of finite total curvature examples in M with a bound on the
genus but with a strictly increasing number of ends. Our results in [27, 28, 26] are crucial
in understanding such limits and they lead us to the following main theorem of this
manuscript.

Theorem 1 Any properly embedded minimal surface in R3 with finite topology has a bound
on the number of its ends that only depends on its genus.

Colding and Minicozzi [2] have recently applied their previous results in [5] and some
new ingenious arguments to show that any complete embedded minimal surface of finite
topology in R3 is properly embedded. In particular, the conclusion of Theorem 1 remains
valid if we weaken the hypothesis of properness to the hypothesis of completeness.

By a theorem of Fischer-Colbrie [14], a complete immersed orientable minimal surface
in R3 has finite index of stability if and only if it has finite total curvature. The index of
such an M is equal to the index of the Schrödinger operator L = ∆ + ‖∇N‖2 associated
to the meromorphic extension of the Gauss map N of M to the compactification of M

by attaching its ends. Grigor’yan, Netrusov and Yau [16] have recently made an in depth
study of the relation between the degree of the Gauss map and the index of a complete
minimal surface of finite total curvature. In particular, they prove that the index of a
complete embedded minimal surface with k ends is bounded from below by k− 1. On the
other hand, Tysk [40] proved that the stability index of L can be explicitly bounded from
above in terms of the degree of N . By the Jorge-Meeks formula for such an embedded M ,
the degree of N equals g + k − 1, where g is the genus and k is the number of ends. By
Theorem 1, if g is fixed, then k is bounded for an embedded M . Thus, one obtains the
following corollary to Theorem 1.
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Theorem 2 If M ⊂ R3 is a complete connected embedded minimal surface with finite
index of stability, then M has finite genus, a finite number of ends and the index of M
can be bounded by a constant that only depends on its genus. In the case of genus zero,
the surface is a plane or catenoid, and so this constant is 1.

It is known that for any integer k ≥ 2, the k-noid defined by Jorge and Meeks [20] has
genus zero, k catenoid type ends and index 2k−3 (Montiel-Ros [33] and Ejiri-Kotani [13]).
Also, there exist examples of complete immersed minimal surfaces of genus zero with a
finite number of parallel catenoidal ends which satisfy the Jorge-Meeks total curvature
formula, but which have arbitrarily large index of stability. These examples demonstrate
the necessity of the embeddedness hypothesis in Theorem 2.

The proof of Theorem 1 depends heavily on results developed in our previous pa-
pers [27, 28, 26]. These papers, as well as the present one, rely on a series of deep works
by Colding and Minicozzi [5, 6, 7, 8, 3] in which they attempt to describe the basic local
geometry of a properly embedded minimal surface in a Riemannian three-manifold, where
there is a local bound on the genus of the surface. A sequence {M(n)}n of properly embed-
ded minimal surfaces in a Riemannian three-manifold W is called locally simply connected,
if every point in W has a small neighborhood which intersects every M(n) in components
which are disks with their boundary on the boundary of this neighborhood. Colding and
Minicozzi are able to prove that, in certain cases, a subsequence of these minimal surfaces
M(n) converges to a minimal lamination L of W with singular set of convergence S(L)
consisting of a locally finite collection of Lipschitz curves transverse to the leaves of L
and when S(L) is nonempty, then L is a foliation of W . For more general cases of these
kinds of minimal lamination limits see Theorems 1.3, 11.1 and 12.2 in [26]; the statement
of Theorem 12.2 of [26] appears here as Theorem 3 in section 3, because we will need its
statement in the proof of Theorem 1. By blow-up arguments, the results in [27, 28, 26, 30]
and Theorem 1 can be viewed as geometric refinements of some of the results by Colding
and Minicozzi.

In the proof of Theorem 1 we will also use a recent theorem by Meeks and Rosen-
berg [30]: If a nonplanar M ∈ M has finite genus and one end, then it is asymptotic to a
helicoid. Furthermore, if such an M is simply connected, then it is a helicoid. This unique-
ness theorem for the helicoid was recently used by Meeks [24] to prove that the singular set
S(L) in the previous paragraph consists of a locally finite collection of C1,1-curves which
are orthogonal to the leaves of L when L is a minimal foliation; this regularity theorem
simplifies somewhat our proof of Theorem 1.

2 The proof of Theorem 1.

Throughout the paper, given x ∈ R3 and r > 0, we will denote by B(x, r) the open
ball in R3 with center x and radius r, and by B(x, r) its closure. When x is the origin,
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we will simply write B(r), B(r) respectively. If Σ ⊂ R3, KΣ will denote its Gaussian
curvature function. A sequence of surfaces {Σn}n in an open subset O of R3 is said
to have locally bounded curvature in O, if for every compact ball B ⊂ O, the sequence
of functions {KΣn∩B}n is uniformly bounded. When O = R3, the sequence {Σn}n is
said to be uniformly locally simply connected, if there exists ε > 0 such that for every
x ∈ R3, Σn ∩B(x, ε) consists of disks with boundary in ∂B(x, ε) for all n sufficiently large
(depending on x).

We now begin the proof of Theorem 1. By Collin [9] and Lopez-Ros [22], the catenoid
is the only properly embedded genus zero surface with at least two ends, and so Theorem 1
holds for genus zero surfaces. Arguing by contradiction, suppose that for some positive
integer g, there exists an infinite sequence {M(n)}n∈N of properly embedded minimal
surfaces in R3 of genus g such that for every n, the number of ends of M(n) is finite
and strictly less than the number of ends of M(n + 1) and the number of ends of M(1)
is at least 2. By Collin’s Theorem [9], all of these surfaces have finite total curvature
with planar and catenoidal ends, which can be assumed to be horizontal after a suitable
rotation. The asymptotic behavior of M(n) implies that for each n ∈ N, there exists a
positive number r1,n such that every open ball in R3 of radius r1,n intersects the surface
M(n) in simply connected components and there is some T1,n ∈ R3 such that B(T1,n, r1,n)
intersects M(n) in at least one component which is not simply connected. Consider the
rescaled and translated surfaces M1,n = 1

r1,n
(M(n) − T1,n). For all n ∈ N, every open

ball of radius 1 intersects M1,n in disks, the closed unit ball B(1) intersects M1,n in a
component which is not simply connected and the limiting tangent planes to the ends of
M1,n are horizontal.

Lemma 1 A subsequence of the M1,n (denoted in the same way) converges to a minimal
lamination L1 of R3 satisfying:

1. If the singular set of C1-convergence S(L1) of {M1,n}n → L1 is nonempty, then L1

is a foliation of R3 by parallel planes and S(L1) consists exactly of two straight lines
orthogonal to L1. Furthermore, given an infinite solid cylinder containing S(L1) in
its interior and a compact subset of the boundary ∂ of this cylinder, then for n large
every component of M1,n∩∂ which intersects the compact set is an almost horizontal
circle on ∂. Finally, as n → ∞, highly-sheeted double multigraphs are forming inside
M1,n around the lines in S(L1) and they are oppositely handed.

2. If S(L1) = Ø, then L1 consists of a single leaf L1 which is properly embedded in R3,
the genus of L1 is at most g and L1 ∩ B(2) is not simply connected. Furthermore,
{M1,n}n converges smoothly to L1 with multiplicity 1 and one of the following three
cases holds for L1.

(a) L1 has one end, positive genus at most g and is asymptotic to a helicoid.
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(b) L1 has nonzero finite total curvature.

(c) L1 has two limit ends.

Proof. The proof of the lemma also follows rather easily from the arguments in our Local
Picture on the Scale of Topology Theorem in [26]. A direct proof of the lemmas is easier
here because in [26], we considered limits of sequences of possibly nonproper minimal
surfaces with boundary. Since we will need some of these arguments later on, then we now
present an essentially self-contained proof.

Since every surface M1,n intersects any open ball of radius 1 in simply connected
components, the sequence {M1,n}n is uniformly locally simply connected with ε = 1.
We now discuss two possibilities, depending whether or not {M1,n}n has locally bounded
curvature in R3.

Case I: {M1,n}n does not have locally bounded curvature in R3.
In this case, there exists a point p0 ∈ R3 such that the maximum value of |KM1,n | in
B(p0,

1
n) is not less than n for each n ∈ N. In this situation, Colding and Minicozzi prove

that there exists some ε ∈ (0, 1) and a subsequence of {M1,n}n (denoted in the same
way) such that M1,n ∩ B(p0, ε) converges to a possibly singular minimal lamination Lp0

of B(p0, ε) with singular set of C1-convergence S(Lp0) that contains p0, such that Lp0

contains a disk leaf D with p0 ∈ D and D ∩ S(Lp0) = {p0}, see [4, 5]. By the one-sided
curvature estimates of Colding and Minicozzi [8], there exists a small neighborhood U of
D − {p0} such that the M1,n ∩ U converge to a sublamination L′

p0
⊂ Lp0 as n → ∞, with

empty singular set of convergence and such that D − {p0} is a limit leaf of L′
p0

. After a
continuation argument, the same results allow us to insure that D extends to a complete
minimal surface Π in R3 and that Lp0 extends to a possibly singular minimal lamination
L of R3 having Π as a limit leaf. Furthermore, if we denote by S(L) the singular set of
convergence of {M1,n}n to L, then Π intersects S(L) in a locally finite set. Since Π−S(L)
is a limit leaf of a minimal lamination L̂ of some neighborhood of Π − S(L) in R3, it is
stable and hence, Π is also stable. As Π is complete, minimal and stable (and it can be
assumed to be orientable, after considering the double cover of Π, which is also stable),
results of do Carmo and Peng [12] or Fischer-Colbrie and Schoen [15] insure that Π must
be a plane. Clearly, p0 ∈ S(L)∩ Π.

Now assume that S(L)∩Π = {p0}, and let l be the straight line orthogonal to Π that
passes through p0. Then one can show that there exists a sequence of coaxial cylinders
Cn with common axis l, radii going to infinity as n → ∞ and symmetric with a certain
fixed small positive height h with respect to Π, such that M1,n ∩ Cn consists only of disks
for each n (because for n large, the part Ωn of M1,n ∩ Cn outside certain cone with axis l
centered at p0 consists of a highly-sheeted double multigraph over an annulus in Π, hence
Ωn is topologically a disk; from here one directly obtains that M1,n ∩ Cn is a disk for n
large). Using a suitable modification of the proof by Colding-Minicozzi of Theorem 0.1
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in [8] with the cylinders Cn replacing balls with radii going to ∞, one deduces that after
passing to a subsequence, that the disks M1,n∩Cn converge to the foliation LΠ by parallel
planes of a neighborhood of Π, with singular set of convergence S(LΠ) consisting of exactly
one Lipschitz curve passing through p0. By Meeks’ regularity theorem [24], S(LΠ) is a
segment contained in l. After repeating this argument at the boundary planes of LΠ,
we see that LΠ can be enlarged to the foliation L1 of R3 by planes parallel to Π and
that a subsequence of the M1,n (denoted in the same way) converges to L1 (in particular,
L = L1), with singular set of convergence S(L1) = l. This implies M1,n intersects B(2) in
disks for n sufficiently large, which contradicts that M1,n ∩B(1) contains a homotopically
nontrivial curve. Therefore, S(L) ∩ Π has at least some point other than p0.

We next explain why S(L)∩Π cannot have more than two points. Arguing by contradic-
tion, suppose that S(L)∩Π has at least three points. Choose (y1, y2, y3) = (y, y3) orthonor-
mal coordinates in R3 so that Π is expressed as {y3 = 0} and (y2, 0) = (0, 0) ∈ S(L)∩ Π.
Hence, there exist y1,y3 ∈ R2 such that (yi, 0) ∈ S(L)∩ Π for i = 1, 3 and (y1, 0), (y3, 0)
are closest points to (y2, 0) in S(L) ∩ Π. If the convex hull of {y1,y2,y3} is a line seg-
ment, then we re-index so that y2 lies in the interior of such a segment. Let D ⊂ Π be
a sufficiently small regular neighborhood of the convex hull of (y1, 0), (y2, 0), (y3, 0) so
that it intersects S(L) ∩ Π in the set {(y1, 0), (y2, 0), (y3, 0)}. Let C = D × (−λ, λ) be
the cylinder over such disk of height 2λ > 0. From the local multigraph picture of M1,n

around any point of S(L)∩Π, we can choose λ, ε > 0 sufficiently small such that for each
i = 1, 2, 3, the cylinder δi(ε) = {‖y− yi‖ < ε} × [−λ

2 , λ
2 ] satisfies the following properties,

see Figure 1.

(A) δi(ε) is contained in C.

(B) M1,n ∩ [{‖y − yi‖ = ε} × (−λ
2 , λ

2 )] contains two spiraling curves α(n, i)+, α(n, i)−

which go from δi(ε) ∩ {y3 = −λ
2 } to δi(ε) ∩ {y3 = λ

2}, such that the normal vector
Nn to M1,n along α(n, i)+ is close to v and Nn|α(n,i)− is close to −v, where ±v are
the unitary directions orthogonal to Π.

(C) For n large, M1,n intersects δi(ε) in a unique component D(n, i) crossing the plane
Π, and this component is a disk.

(D) The boundary of D(n, i) contains α(n, i)+∪α(n, i)− with the remainder at its bound-
ary consisting of two arcs h+(n, i) and h−(n, i), respectively contained in {y3 = λ

2 },
{y3 = −λ

2 }.

(E) M1,n∩
[
[D − ∪3

i=1δi(ε)]× (−λ
2 , λ

2 )
]

contains two large components, each one being an
almost horizontal multigraph over its orthogonal projection to Π.

Let β1,2(n) be a simple closed curve on M1,n which consists of two arcs whose orthog-
onal projections to Π are the distance minimizing line segment joining ∂δ1(ε) ∩ Π with
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Figure 1: More than two lines in S(L1) produce unbounded genus.
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Figure 2: Outside a big cylinder Ĉ, M1,n consists of annular graphical ends.

∂δ2(ε)∩Π, these two arcs being contained in consecutive (oppositely oriented) components
of the double multigraph that appears in point (E) above, together with two small arcs in
the disks D(n, 1), D(n, 2). We will call β1,2(n) a connection loop between (y1, 0), (y2, 0).
For n large enough, β1,2(n) can be assumed to lie in the slab {|y3| ≤ λ

2 }. Similarly, we
can construct a connection loop β2,3(n) ⊂ M1,n between (y2, 0), (y3, 0) but in this case
we choose the two graphical arcs of β2,3(n) to lie in oppositely oriented components of
the doubly multigraph, one arc in each component of D × ([−λ,−λ

2 ] ∪ [−λ
2 , λ]). Note

that β1,2(n) and β2,3(n) can be chosen to intersect transversely in one point. By taking
different initial planes Π in L, we see that the genus of M1,n is not bounded as n → ∞,
which contradicts that the M1,n all have the same finite genus. This proves that S(L)∩Π
cannot have more than two points, so it has exactly two points (y1, 0) and (y2, 0) = (0, 0).

Using the notation in the previous paragraphs, we now have a local multigraph picture
with two cylinders δi(ε), each of which boundaries cuts M1,n in two spiraling curves α(n, i)±

going from top to bottom, i = 1, 2. Embeddedness of M1,n clearly implies that for fixed
i = 1, 2 the spiraling curve α(n, i)+ have the same handedness as α(n, i)−. We next prove
that α(n, 1)+ have opposite handedness as α(n, 2)+. If this is not the case, then one can
construct two consecutive connection loops β1,2(n), β̂1,2(n) with homological intersection
number ±1, so a neighborhood of β1,2(n) ∪ β̂1,2(n) has positive genus. Since the sheeting
number of the above multigraphs goes to ∞ as n → ∞, one can consider an arbitrarily
large number of disjoint pairs of connection curves of this type, and so the boundedness of
the genus of the M1,n leads to contradiction. Hence α(n, 1)+ is left handed and α(n, 2)+

is right handed (or vice versa) and we arrive to a picture as in Figure 2.
The multigraph picture we have for M1,n insures that for λ > 0 fixed and small,

the component of M1,n ∩ {|y3| ≤ λ
2} that contains β1,2(n) is a planar domain for all n

large. Now one can reproduce the previous argument where we applied the modification
of the proof of Theorem 0.1 in Colding-Minicozzi [8] with cylinders instead of balls (in
fact, we must also exchange Theorem 0.1 valid for minimal disks by its corresponding
statement for minimal planar domains, see Colding-Minicozzi [8, 3] and also Theorem 3
in our paper [27]), and deduce that L is the foliation of R3 by planes {y3 = constant}
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parallel to Π = {y3 = 0} and S(L) consists of two parallel straight lines orthogonal to
these planes, represented by S1 = {y1} × R and S2 = {0} × R. In summary, we have
proved that part 1 of the lemma holds under the assumption that M1,n does not have
locally bounded curvature in R3.

Case II: {M1,n}n has locally bounded Gaussian curvature in R3.
A standard compactness result (see for instance Lemma 2 in [27]) shows that, after ex-
tracting a subsequence, {M1,n}n converges to a C1,α-minimal lamination of R3. Since
M1,n ∩B(1) contains a nonsimply connected component, there exists a positive number ε

such that the supremum of the norms of the second fundamental forms of the M1,n∩B(2)
is at least ε. Since the convergence of the M1,n to the leaves of L1 is smooth, it follows
that there is a leaf L1 ∈ L1 which has nonzero Gaussian curvature at some point in B(2).
By Theorem 1.6 in [30], L1 is either properly embedded in a region W which can be R3,
an open halfspace or an open slab (in particular, L1 separates W , hence L1 is orientable).
As L1 is not a plane but it is complete, L1 cannot be stable. Thus, the convergence of
the M1,n to L1 must have multiplicity 1. By a standard curve lifting argument, the genus
of L1 is at most g. As L1 has finite genus, Theorem 5 in [27] implies that L1 is properly
embedded in R3. (Since L1 has positive injectivity radius, then Theorem 2 in [29] also
implies L1 is properly embedded in R3.) By the Strong Halfspace Theorem [18], L1 is the
only leaf in L1. Since L1 is proper in R3, a curve lifting argument shows that L1 ∩ B(2)
is not simply connected. As L1 is properly embedded with finite genus and nonflat, The-
orem 1 in [28] implies that L1 lies in one of the cases (a), (b), (c) in part 2 of the lemma,
which finishes the proof. 2

Lemma 2 If S(L1) = Ø, then the unique leaf L1 ∈ L1 given in part 2 of the statement of
Lemma 1, does not have two limit ends.

Proof. Reasoning by contradiction, suppose that L1 has two limit ends. Theorem 1 in [27]
gives a general description of the geometric appearance and asymptotic behavior of such
a minimal surface, part of which we now recall. After a fixed rotation A : R3 → R3, we
may assume that M = A(L1) has an infinite number of middle ends which are horizontal
planar ends. Furthermore, there is a representative E ⊂ M for the top limit end which is
conformally S1 × [t0,∞) punctured in an infinite set of points {e1, e2, . . . , en, . . .}, where
S1 is a circle of circumference equal to the vertical component of the flux of E. In this
conformal representation of E, we also have x3(θ, t) = t, x3(en) < x3(en+1) for all n ∈ N
and limn→∞ x3(en) = ∞.

For each i ∈ N, let ti = x3(ei)+x3(ei+1)
2 and let define γ(i) = x3

−1(ti) ⊂ E ⊂ M and
γ(0) = x−1

3 (t0) = ∂E. Let S be the closed horizontal slab in R3 between the heights t0
and t2g+1, where g is the genus of the rotated surfaces Σ(n) = A(M1,n). Let MS = M ∩S,
which is a minimal surface in S whose boundary consists of two simple closed curves
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γ(0) ⊂ x−1
3 ({0}), γ(2g + 1) ⊂ x−1

3 ({t2g+1}). Note that MS has 2g + 1 horizontal planar
ends. Let C(R) = {(x1, x2, x3) | x2

1 + x2
2 ≤ R2} be the solid cylinder of radius R > 0. For

ε > 0 small, there exists an R1 large such that MS−C(R1) consists of 2g+1 planar annular
graphs which are ε-close to the set of planes P = {x−1

3 (x3(e1)), . . . , x−1
3 (x3(e2g+1))} in the

C2-norm, and γ(i) is contained in C(R1) for 0 ≤ i ≤ 2g + 1.
For every R2 > R1 there exists an N > 0 such that for n ≥ N , ΣS(n, R2) = Σ(n)∩S∩

C(R2) is ε-close to MS(R2) = MS ∩ C(R2) in the C2-norm. By initially choosing ε small,
the following properties also hold for any n ≥ N :

• ∂ΣS(n, R2) consists of 2g + 3 simple closed curves which are arbitrarily close to
∂MS(R2).

• We can approximate the curves γ(i) by planar curves γ(i, n) on ΣS(n, R2)∩x−1
3 (ti),

i = 0, . . . , 2g + 1.

• ∂ΣS(n, R2) has two components lying on ∂S and 2g + 1 graphical simple closed
curves α1(n), . . . , α2g+1(n) ⊂ ∂C(R2) which are ordered by their relative heights, see
Figure 3.

An elementary argument shows that in a compact surface X with genus g and empty
boundary, any connected planar subdomain with 2g+1 boundary components has at least
one boundary component which separates X . Since Σ(n) has genus g and ΣS(n, R2) is
a connected planar domain with 2g + 3 boundary components, there exists at least one
i = 1, . . . , 2g+1 such that the corresponding curve αi(n) separates Σ(n). Let Σ̃(n) be the
component of Σ(n)− αi(n) which is disjoint from ΣS(n, R2). Note that there is a disk in
C(R2) bounded by αi(n) which only intersects Σ(n) along αi(n) ∪ γ(i, n). The union of
this disk with Σ̃(n) is a properly embedded surface in R3. After a slight perturbation of
this surface in a neighborhood of Σ̃(n), we obtain a properly embedded surface Ω(n) ⊂ R3

which intersects Σ(n) only along γ(i, n). This implies γ(i, n) separates Σ(n). Let W (n)
be the closed complement of Σ(n) in R3 which intersects Ω(n) in a noncompact connected
surface Ω̃(n) with boundary γ(i, n). Denote by Di−1(n), Di+1(n) the planar disks bounded
by γ(i− 1, n), γ(i+ 1, n). Since ∂W (n) ∪ Di−1(n) ∪ Di+1(n) is a good barrier for solving
Plateau problems in W (n) (see [32]), a standard argument implies that we can find a
connected orientable noncompact properly embedded least-area surface ∆(n) contained in
W (n) − (Di−1(n) ∪ Di+1(n)), with ∂∆(n) = γ(i, n).

By a result of Fischer-Colbrie [14], ∆(n) has finite total curvature and hence a positive
finite number of planar and catenoidal ends which lie in W (n). By definition and unique-
ness of the limit tangent plane at infinity [1], the limiting tangent planes to the ends of
∆(n) are parallel to the tangent planes to the ends of Σ(n). Let ∆S(n, R2) be the compo-
nent of ∆(n)∩ S ∩C(R2) whose boundary contains γ(i, n). Note that the other boundary
components of ∆S(n, R2) lie on ∂C(R2) ∩ W (n). For R1 < R2 large, curvature estimates
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Figure 3: Producing the stable minimal surface ∆(n) in W .
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for stable minimal surfaces [36] imply that ∆S(n, R2)−C(R1) consists of almost horizontal
annular graphs. By the area minimizing property of ∆(n) in W (n)− (Di−1(n)∪Di+1(n)),
there is only one such graph which can be assumed to be oriented by the upward pointing
normal.

Let Gn be the Gauss map of ∆̃(n) = ∆(n)−∆(n, R2). Since ∆̃(n) is almost horizontal
along its boundary, the spherical Gaussian image Gn(∂∆̃(n)) in S2 is contained in a small
neighborhood Q(n, R2) of (0, 0, 1). The Gaussian image of the ends of ∆̃(n) is contained
in the pair of antipodal points of S2 corresponding to the normal vectors of its ends. But
since such a Gauss map is constant or an open map and Gn(∆̃(n))− Q(n, R2) is a stable
domain for the operator ∆ + 2 on S2, we conclude that Gn(∆̃(n)) ⊂ Q(n, R2). Note that
as n and R2 approach to ∞, Q(n, R2) limits to be (0, 0, 1). It follows that ∆̃(n) is a
connected graph and that the tangent planes to Σ(n) are horizontal. This implies that
the rotation A can be taken to be the identity; in other words, L1 has horizontal limit
tangent plane at infinity.

Since γ(i, n) separates Σ(n) and the ends of Σ(n) are horizontal, γ(i, n) has vertical
flux. Since γ(i, n) limits to γ(i) as n → ∞, γ(i) also has vertical flux. But Theorem 6
in [27] implies that L1 does not have vertical flux along such a separating curve. This
contradiction finishes the proof of the lemma. 2

Lemma 3 S(L1) = Ø.

Proof. The proof of this lemma is almost identical to the proof of the previous lemma.
The reason for this is that for any fixed ball B in R3 which intersects both lines in S(L1),
the proof of Lemma 1 gives a multigraph description of M1,n ∩ B for large n large (see
Figure 2), which allows one to apply the argument in the proof of Lemma 2. We now
outline the proof along the lines of the previous proof.

Reasoning again by contradiction, assume that S(L1) 6= Ø. By Lemma 1, L1 is a folia-
tion of R3 by parallel planes and S(L1) consists of two straight lines which are orthogonal
to L1. Also recall that the classical periodic Riemann minimal examples {Rt}t>0 form
a one-parameter family, and each one of the ends of this family, when suitably normal-
ized, converges either to a infinite collection of vertical catenoids (say when t → 0) or to
two oppositely oriented vertical helicoids (when t → ∞). Concerning this last degenerate
limit, there exists another normalization under which {Rt}t limits to a foliation F of R3

by horizontal planes, with singular set of convergence being two vertical lines. A moment’s
thought shows that the convergence of {M1,n}n to L1 has the same basic structure as a
two limit end example, see the proof of part 1 of Lemma 1 and the accompanying Figure 2.
More precisely, let C(R1) be a solid cylinder of radius R1 which contains S(L1). Consider
the intersection of M1,n with a slab S bounded by two planes in L1. For R2 > R1, the
part of M1,n ∩ S in C(R2)− C(R1) consists of a large number of annular graphs which are
almost parallel to the planes in L1. Furthermore inside C(R1)∩ S we can find as many of
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the related curves γ(i, n) ⊂ M1,n from the proof of Lemma 2 as we desire. Carrying out
the arguments in the proof of the Lemma 2 we obtain a contradiction, which proves the
present lemma. 2

So far we have proved that, after passing to a subsequence, the surfaces M1,n con-
verge smoothly with multiplicity 1 to a minimal lamination L′

1 of R3 which consists of a
connected properly embedded surface L1 in one of the following two cases.

(1) L1 is a one-ended minimal surface with positive genus less than or equal to g and L1

is asymptotic to a helicoid.

(2) L1 is a minimal surface with finite total curvature, genus at most g and L1 has at
least two ends.

Given R1 > 0, let L1(R1) = L1 ∩ B(R1) be the part of L1 inside the closed ball of radius
R1 centered at the origin. We can take R1 sufficiently large so that L1(R1) contains the
interesting geometry of L1 and L1−L1(R1) consists of annular representatives of the ends
of L1.

Suppose that L1 is in case (1) above. Replace L1(R1) by a disk of negative Gaussian
curvature, so that the union of this new piece with L1−L1(R1) produces a smooth properly
embedded surface L̃1 ⊂ R3 of nonpositive curvature. For R1 large, this replacement can
be made in such a way that L̃1 is ε-close to a helicoid in the C2-norm for an arbitrarily
small ε > 0. Now assume L1 is in case (2). Then, for R1 large, L1 − L1(R1) consists of a
finite number r ≥ 2 of noncompact annular minimal graphs over the limit tangent plane
at infinity of L1, bounded by r closed curves which are almost parallel and logarithmically
close in terms of R to an equator on the boundary of B(R1). Replace L1(R1) by r almost-
flat parallel disks contained in B(R1) so that the resulting surface, after gluing these disks
to L1 − L1(R1), is a smooth properly embedded surface L̃1 ⊂ R3. This replacement can
be made so that L̃1 ∩ B(R1) has second fundamental form which is arbitrarily small. In
either of the two cases, note that L̃1 is no longer minimal, but it is minimal outside B(R1).

For n large, the surface M1,n(R1) = M1,n ∩ B(R1) can be assumed to be arbitrarily
close to L1(R1) in the C2-norm. Modify M1,n in B(R1) as we did for L1 to obtain a
new smooth properly embedded surface M̃1,n which is C2-close to L̃1 in B(R1). Since the
number of ends of M̃1,n is unbounded as n → ∞, this surface is not simply connected
for n large. Since M̃1,n has catenoidal or planar ends, for n large there exists a largest
positive number r2,n such that for every open ball B in R3 of radius r2,n, every simple
closed curve in M̃1,n∩B bounds a disk on M̃1,n, but not necessarily inside B. Furthermore,
there exists a closed ball of radius r2,n centered at a point T2,n ∈ R3 whose intersection
with M̃1,n contains a simple closed curve which is homotopically nontrivial in M̃1,n. Since
for n large M̃1,n is simply connected in B(2R1) and we can assume R1 ≥ 2, any simple
closed curve homotopically nontrivial on M̃1,n which is contained in a ball of radius 2 is
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necessarily disjoint from B(R1). If r2,n is less than 2, then there exists a simple closed
curve Γ ⊂ M̃1,n which is homotopically nontrivial on M̃1,n and which is contained in a
closed ball of radius r2,n. By the previous argument, Γ does not enter B(R1), and so, Γ is
homotopically nontrivial in M1,n. In particular, r2,n ≥ 1.

Let M̂2,n = 1
r2,n

(M̃1,n − T2,n). Note that B(1) contains a simple closed curve in M̂2,n

which is homotopically nontrivial in M̂2,n. Also let M2,n = 1
r2,n

(M1,n − T2,n) and B1,n =
1

r2,n
(B(R1) − T2,n). Clearly, M̂2,n is homeomorphic to M̃1,n and has simpler topology

than M2,n. The simplification of the topology of M2,n giving M̂2,n (as a replacement of a
subdomain by disks) only occurs inside the ball B1,n.

Lemma 4 Let C ⊂ R3 be any compact set. Then, for n large, the ball B1,n is disjoint
from C. Moreover, the sequence {M2,n}n is locally simply connected in R3 and after
passing to a subsequence, it converges with multiplicity 1 to a minimal lamination L2 of
R3 consisting of a single leaf L2 which satisfies the property (1) or (2).

Proof. We now prove the first statement in the lemma. Suppose to the contrary, that
after passing to a subsequence, every B1,n intersects a compact set C. We first show
that the radius of B1,n goes to zero as n → ∞. If this is not the case, and again after
taking a subsequence, we can assume that the radius of B1,n is bigger than some ε > 0
for any n ∈ N. Since the distance from B(1) to B1,n is bounded independently of n,
there must exist a positive number r0 such that the ball B′

1,n concentric with B1,n with
radius r0, contains B(1) for every n. By our normalization, for n sufficiently large, B′

1,n

intersects M̂2,n in disks, which contradicts that B(1) contains a closed curve which is
homotopically nontrivial in M̂2,n (we are using here that our previous sequence {M1,n}n

converges smoothly on arbitrarily large compact subsets of R3 to L1 and outside B(R1),
L1 consists of its annular ends). This contradiction shows that the radii of the balls B1,n

tend to zero as n → ∞, provided that these balls intersect C.
By the previous paragraph, after taking a subsequence we can assume that the sequence

of balls {B1,n}n converges to a point p ∈ C. We now check that {M2,n}n is locally simply
connected in R3 − {p}. Fix a point q ∈ R3 − {p}. Then we can write ‖p − q‖ = dε for
d ≥ 10, ε > 0. Consider the balls B(p, ε), B(q, ε). Reasoning by contradiction, suppose
that for ε arbitrarily small, for n large, we find a simple closed curve Γ ⊂ M2,n ∩ B(q, ε)
which is homotopically nontrivial in M2,n. Since ε can be assumed to be less than 1, Γ
must bound a disk D in M̂2,n. By the convex hull property, D must intersect B1,n. Note
that D − B1,n is a compact connected planar domain with boundary in B(q, ε) ∪ ∂B1,n.
But an elementary application of the maximum principle shows that there is no connected
minimal surface having its boundary in two such balls (pass a suitable catenoid between
the balls). Thus, {M2,n}n is locally simply connected in R3 − {p}.
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In our proof of Lemma 4, we will need a general compactness and regularity result
related to certain sequences of embedded minimal surfaces in R3; this result is Theorem
12.2 in [26]. This theorem will allow us to prove, after replacement by a subsequence,
that {M2,n}n converges with multiplicity one to our desired properly embedded minimal
surface L2, and that during this process, the sequence of domains {M2,n∩B1,n}n eventually
leaves every compact set in R3. For the readers convenience, we state this theorem below.
We remark that the condition that a sequence of embedded minimal surfaces have locally
positive injectivity radius is implied by the condition that the sequence of surfaces is
locally simply connected, and so, we can apply this theorem to the sequence {M2,n −{p}}
in R3 − {p}. In our first application of this result, W = {p}, which is the limit of the
sequence of balls {B1,n}. In our later applications, W will be a finite set.

Before stating the theorem, we need the definition of singular minimal lamination.
Given an open set A ⊂ R3 and N ⊂ A, we will denote by N

A the closure of N with
respect to the induced topology in A.

Definition 1 A singular lamination of an open set A ⊂ R3 with singular set S ⊂ A is
the closure LA of a lamination L of A − S, such that for each point p ∈ S, then p ∈ LA,
and in any open neighborhood Up ⊂ A of p, the closure L ∩ Up

A fails to have an induced
lamination structure. For a leaf L of L, we call a point p ∈ L

A ∩ S a singular leaf point
of L, if for some open set V ⊂ A containing p, then L ∩ (V − S)

V −S
= L ∩ V , and we let

SL denote the set of singular leaf points of L. Finally, we define LA(L) = L∪SL to be the
leaf of LA associated to the leaf L of L. In particular, if for a given leaf L ∈ L we have
L

A ∩ S = Ø, then L is a leaf of LA.

In statement 7 of Theorem 3 below the phrase “related limiting minimal parking garage
structure” refers to the type of limiting structure that one encounters in the discussion of
Case 1 in the proof of Lemma 1. In this case where the sequence of surfaces {M1,n}n∈N
did not have locally bounded curvature in R3, then we showed that a subsequence of
these surfaces converged to a minimal foliation L of R3 by planes with singular set S(L)
of C1-convergence being two orthogonal lines to the planes in L. Furthermore, when
approaching the limit lamination, the surfaces have the appearance of oppositely handed
highly-sheeted double multigraphs along the lines S(L). We suggest to the reader to
compare this case to the last sentence of statement 7 of Theorem 3. More generally, this
type of convergence of minimal surfaces to a foliation of R3 by planes with singular set of
convergence being a locally finite set of lines orthogonal to the planes is what is referred
to as a limiting minimal parking garage structure of R3. We refer the reader to section 11
of [26] where the basic theory of parking garage structures is developed, classical examples
are given. We also refer the reader to [39] where it is shown that certain limiting minimal
parking garage structures can be analytically untwisted via the implicit function theorem
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to produce one-parameter families of interesting periodic minimal surfaces that converge
to it.

Theorem 3 (Theorem 12.2 in [26]) Suppose W is a countable closed subset of R3 and
{Mn}n is a sequence of embedded minimal surfaces (possibly with boundary) in A = R3−W
which has locally positive injectivity radius in A. Then, after replacing by a subsequence,
the sequence of surfaces {Mn}n converges on compact subsets of A to a possibly singular
minimal lamination LA = L

·
∪ SA of A (here LA denotes the closure in A of a minimal

lamination L of A−SA, and SA is the singular set of LA). Furthermore, the closure L in
R3 of ∪L∈LL has the structure of a possibly singular minimal lamination of R3, with the
singular set S of L satisfying

S ⊂ SA ·
∪ (W ∩ L).

Let S(L) ⊂ L denote the singular set of convergence of the Mn to L. Then:

1. The set P of planar leaves in L forms a closed subset of R3.

2. The set Plim of limit leaves of L is a collection of planes which form a closed subset
of R3.

3. For each point of S(L) ∪ SA, there passes a plane in Plim and each such plane
intersects S(L)∪ W ∪ SA in a countable closed set.

4. Through each point of p ∈ W satisfying one of the conditions (4.A),(4.B) below,
there passes a plane in P.

(4.A) The area of {Mn ∩ Rk}n diverges to infinity for all k large, where Rk is the
ring {x ∈ R3 | 1

k+1 < |x− p| < 1
k}.

(4.B) The convergence of the Mn to some leaf of L having p in its closure is of
multiplicity greater than one.

5. If P is a plane in P − Plim, then there exists δ > 0 such that for the δ-neighborhood
P (δ) of P , one has P (δ)∩ L = {P}.

6. Suppose that there exists a leaf L of L which is not contained in P. Then the
convergence of portions of the Mn to L is of multiplicity one, and one of the following
two possibilities holds:

(6.1) L is proper in R3,P = Ø, L ∩ (SA ∪ S(L)) = Ø and L = {L}.
(6.2) L is not proper in R3, P 6= Ø and L ∩ (SA ∪ S(L)) = Ø. In this case, there

exists a subcollection P(L) ⊂ P consisting of one or two planes in P such that
L = L ∪ P(L), and L is proper in one of the components of R3 −P(L).
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In particular, L is the disjoint union of its leaves, each of which is a plane or a
minimal surface, possibly with singularities in W , which is properly embedded
(not necessarily complete) in an open halfspace or open slab of R3.

7. Suppose that the surfaces Mn have uniformly bounded genus. If S ∪ S(L) 6= Ø, then
L contains a nonempty foliation F of a slab of R3 by planes and S(L) ∩ F consists
of 1 or 2 straight line segments orthogonal to these planes, intersecting every plane
in F . Furthermore, if there are 2 different line segments in S(L) ∩ F , then in the
related limiting minimal parking garage structure of the slab, the limiting multigraphs
along the 2 columns are oppositely oriented. If the surfaces Mn are compact, then
L = F is a foliation of all of R3 by planes and S(L) consists of complete lines.

Consider the sequence of compact minimal surfaces {Tn = M1,n ∩ (B(n)−B(1, n))}n.
As we have already observed, this sequence of compact minimal surfaces has locally positive
injectivity radius in R3 − {p}. Note that if L consist of planes, then the singular set S
is empty. By Theorem 3 (especially see statement 7), a subsequence of these surfaces
converges to a nonsingular minimal laminationL of R3−{p} which extends to a nonsingular
minimal lamination L of R3. Since for all fixed ε > 0 and for n large the area of M1,n ∩
B(p, ε) is greater than 3

2πε2 (by the monotonicity of area formula), the regularity of L and
statement 4 imply that there is a plane of L passing through the point p. After a rotation
of R3, we will assume that this planar leaf is horizontal.

By statement 6, any nonflat leaf L of L is properly embedded in R3 − P(L), where
P(L) consist of one or two planar leaves of L. A standard curve lifting argument implies
that L has genus at most g, and so, every leaf of L has finite genus. Theorem 5 in [27]
implies that L consists entirely of leaves which are horizontal planes.

We shall consider separately two cases, depending on whether or not S(L) is empty.
First we suppose S(L) is empty. Since M̂2,n consists of components that are disks in B(p, 1

2)
when n is large and M̂2,n ∩ B(1) contains homotopically nontrivial simple closed curve,
then, after an isotopy of such a curve, there is a simple closed homotopically nontrivial
curve Γn of M̂2,n in B(2) which is disjoint from B(p, 1

2). Since S(L) is empty and the
surfaces T̂n = Tn ∩ (B(3) − B(p, 1

2)) are compact, then, for n large, each component of
T̂n that intersects B(2) is an almost horizontal graph over the (x1, x2)-plane and is a disk
with boundary in ∂B(3) or is an annulus with boundary in ∂B(3)∪∂B(p, 1

2) (here we may
assume ∂B(p, 1

2) is transverse to every Tn). In particular, for n large, every component of
M̂2,n∩B(3) is a disk, which contradicts the existence of the curve Γn. Thus, S(L) 6= Ø. We
also note that if S(L) is disjoint from B(3), then one can also apply the above argument
to obtain a contradiction. Thus, we may assume that S(L) intersects B(3).

Since S(L) is nonempty, statement 7 implies that L is a foliation of R3 with S(L)
consisting of one or two straight line components which are orthogonal to the planes in
L. The proof of Lemma 3 applies to show that S(L) does not contain two components.
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Hence, S(L) contains a single line. We now check that the proof of the similar case in
the Lemma 3 can be modified to eliminate the possibility that S(L) is a single line; the
diffuculty here is that the point p forces us to be more careful.

There are two cases to consider, depending whether or not p ∈ S(L). If p /∈ S(L),
then choose an ε > 0 such that 2ε = min{1

2 , dR3(p, S(L); otherwise, let ε = 1
2 . As in

the previous case, there exists a simple closed homotopically nontrivial curve Γn of M̂2,n

contained in B(2) and disjoint from B1,n. For n large, the surfaces Tn ∩ (B(4)− B(p, ε))
contain a main planar domain component Cn with a long connected double spiral curve
on ∂B(3) which contains the curve Γn. The component Cn intersects ∂B(p, ε) in a simple
similar curve when p ∈ S(L) or in a large number of almost-horizontal closed curves in
∂B(p, ε) when p /∈ S(L). It follows that M̂2,n ∩ B(4) consists of disks which contradicts
the existence of Γn.

This contradiciton and the above arguments show that the sequence of balls B1,n must
leave every compact set as n goes to ∞, which is the first statement in Lemma 4.

We now check that the sequence {M2,n}n is locally simply connected in R3. As in the
previous case where B1,n converges to {p}, the failure of {M2,n}n to be simply connected
at a point q ∈ R3 implies the existence of a compact connected minimal planar domain
D−B1,n ⊂ M2,n with boundary in B(q, ε)∪ ∂B1,n, where ε > 0 is arbitrarily small. Since
r2,n ≥ 1, the radius of B1,n is less than or equal to R1. As B1,n leaves every compact set for
n large, we deduce from the maximum principle that there is no such connected minimal
surface D−B1,n when the distance between the balls B(q, ε), B1,n is sufficiently large. This
proves {M2,n}n is a locally simply connected sequence in R3. Now our previous arguments
in Lemmas 1, 2 and 3 apply without modifications, finishing the proof of Lemma 4. 2

With the notation of the previous lemma and given R2 > 0, we let L2(R2) = L2∩B(R2)
where the radius R2 is chosen large enough so that L2(R2) contains the interesting geom-
etry of L2 and L2 −L2(R2) consists of annular representatives of the ends of L2. Perform
the corresponding replacement of L2(R2) by disks to obtain a smooth properly embedded
(not minimal) surface L̃2 ⊂ R3 as we did just before the statement of Lemma 4. Since
{M2,n}n converges smoothly with multiplicity 1 to L2 and B1,n leaves any compact set of
R3 for n large enough, the sequence {M̂2,n}n also converges smoothly with multiplicity 1
to L2. Replace M̂2,n ∩ B(R2) in a similar way to get a new smooth properly embedded
surface M̃2,n ⊂ R3 which is not minimal but is C2-close to L̃2 in B(R2). Note that M̃2,n

has simpler topology than M2,n, the simplification of topology occurring as two replace-
ments by collections of disks inside the balls B1,n and B(R2). This finishes the second
stage in a recursive definition of properly embedded surfaces obtained as rescalings and
disk replacements from the original surfaces M(n).

We now proceed inductively to produce the k-th stage. After passing to a subsequence
of the original surfaces M(n), we assume that for each i < k the following properties hold:
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• There exist largest numbers ri,n ≥ 1 such that in every open ball B ⊂ R3 of radius
ri,n, every simple closed curve in M̃i−1,n ∩ B bounds a disk on M̃i−1,n (in the case
i = 1 we let M̃0,n to be M(n)).

• There exist points Ti,n ∈ R3 such that M̃i−1,n ∩B(Ti,n, ri,n) contains a simple closed
curve which is homotopically nontrivial in M̃i−1,n.

• The sequence of surfaces Mi,n = 1
ri,n

(Mi−1,n − Ti,n) is locally simply connected in
R3, all being rescaled images of the original surfaces M(n).

• {Mi,n}n converges with multiplicity 1 to a minimal lamination Li which consists of
a single leaf Li satisfying property (1) or (2).

• The surface M̂i,n = 1
ri,n

(M̃i−1,n −Ti,n) has simpler topology than Mi,n: the simplifi-

cation of the topology of Mi,n giving M̂i,n consists of i−1 replacements by collections
of disks and these replacements occur in i − 1 disjoint balls which leave each com-
pact set of R3 as n → ∞ (these balls come from replacements in former stages).
Furthermore, Mi,n, M̂i,n coincide outside such i − 1 balls.

• There exists a large number Ri > 0 such that Li(Ri) = Li ∩ B(Ri) contains the
interesting geometry of Li and Li −Li(Ri) consists of annular representatives of the
ends of Li.

• There exists a smooth properly embedded (not minimal) surface L̃i ⊂ R3 such that
L̃i coincides with Li in R3−B(Ri) and L̃i∩B(Ri) is either a disk of negative Gaussian
curvature (when Li is in case (1)) or a finite number of almost-flat disks (if Li is in
case (2)).

• There exist smooth properly embedded (not minimal) surfaces M̃i,n ⊂ R3 such that
M̃i,n coincides with M̂i,n in R3 − B(Ri) and M̃i,n ∩ B(Ri) is arbitrarily C2-close to
L̃i ∩ B(Ri). Note that by point 5 above, the surface M̂i,n ∩ B(Ri) coincides with
Mi,n ∩ B(Ri). As a consequence, M̃i,n has simpler topology than Mi,n, with the
simplification of topology consisting of i replacements by collections of disks, one
of these replacements occurring in B(Ri) and the remaining ones inside i − 1 balls
which leave each compact set of R3 as n → ∞. Outside these i balls, M̃i,n and Mi,n

coincide.

We now describe how to define rk,n, Tk,n, Mk,n, Lk, M̂k,n, Rk, L̃k and M̃k,n.
We define rk,n to be the largest positive number such that for every open ball B ⊂ R3

of radius rk,n, every simple closed curve in M̃k−1,n ∩B bounds a disk in M̃k−1,n. As in the
paragraph before the statement of Lemma 4, one proves that rk,n ≥ 1. Furthermore, there
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Figure 4: The inductive process in the stage k = 4.

exists a closed ball of radius rk,n centered at a point Tk,n ∈ R3 whose intersection with
M̃k−1,n contains a simple closed curve which is homotopically nontrivial in M̃k−1,n. We
denote by Mk,n = 1

rk,n
(Mk−1,n − Tk,n) and by M̂k,n = 1

rk,n
(M̃k−1,n − Tk,n). Hence, Mk,n

is a rescaled and translated image of the original surface M(n), and M̂k,n ∩B(1) contains
a curve which is homotopically nontrivial in M̂k,n. Finally, M̂k,n is obtained from Mk,n

after k− 1 replacements by collections of disks, one of these replacements occurring inside
the ball Bk−1,n = 1

rk,n
(B(Rk−1) − Tk,n) and the remaining k − 2 replacements in disjoint

balls B̃1,n(k), . . . , B̃k−2,n(k) where rescaled and translated images of the forming limits
L1, . . . , Lk−2 are captured (see Figure 4). Note that the radius of Bk−1,n is Rk−1

rk,n
≤ Rk−1,

and repeating this argument we have that the radius of B̃j,n(k) is less than or equal to Rj

for each j = 1, . . . , k − 2.

Lemma 5 For any compact set C ⊂ R3, for n large Bk−1,n ∪
(⋃k−2

j=1 B̃j,n(k)
)

is disjoint

from C. Moreover, the sequence {Mk,n}n is locally simply connected in R3 and after
passing to a subsequence, it converges with multiplicity 1 to a minimal lamination Lk of
R3 consisting of a single leaf Lk which satisfies the property (1) or (2).
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Proof. Assume that the first statement in Lemma 5 fails for some compact set C. As in
the beginning of the proof of Lemma 4, it can be shown that all the balls Bk−1,n , B̃j,n(k)
which stay at bounded distance from the origin as n goes to ∞, their corresponding radii
go to zero. Then, after extracting a subsequence, Bk−1,n ∪

(⋃k−2
j=1 B̃j,n(k)

)
has nonempty

limit set as n → ∞ being a finite set of points in R3, {p1, . . . , pl}.
We now prove that the sequence {Mk,n}n is locally simply connected in R3−{p1, . . . , pl}.

The proof of the similar fact in Lemma 4 does not work in this setting, so we give
a different proof. Arguing by contradiction, we may assume that there exists a point
p ∈ R3 −{p1, . . . , pl} such that for any arbitrarily small radius r > 0, there exists a homo-
topically nontrivial curve γk,n(r) in Mk,n∩B(p, r). By our normalization, γk,n(r) bounds a

disk D̂k,n(r) on M̂k,n. Since M̂k,n and Mk,n coincide outside Bk−1,n ∪
(⋃k−2

j=1 B̃j,n(k)
)
, we

deduce that D̂k,n(r) must enter some of the balls Bk−1,n, B̃j,n(k). Hence, D̂k,n(r) intersects

the boundary of Bk−1,n ∪
(⋃k−2

j=1 B̃j,n(k)
)

in a nonempty collection A of curves, each of
which is arbitrarily close to a rescaled and translated image of the intersection of a sphere
S of large radius centered at the origin with either an embedded minimal end of finite total
curvature or with a helicoidal end. Define Ωk,n(r) = D̂k,n(r)− [Bk−1,n ∪ (

⋃k−2
j=1 B̃j,n(k))],

which is a planar domain in Mk,n whose boundary consists of γk,n(r) together with the
curves in A. Let Ω̂k,n(r) be the compact subdomain on Mk,n obtained by gluing to Ωk,n(r)
the forming helicoids with handles whose boundary curves lie on Ωk,n(r). Since Ω̂k,n(r) is
a compact minimal surface with boundary and the balls B̃i,n(k) are disjoint from B(p, r)
for n large, the convex hull property implies that Ω̂k,n(r) has at least one boundary curve
Γ outside B(p, r). Then Γ lies in the boundary of one of the balls Bk−1,n, B̃j,n(k), which
we simply denote by BΓ. Furthermore, there exist a neighborhood UΓ of Γ in Ω̂k,n(r)
which lies outside BΓ, an end Ẽ of a vertical catenoid centered at the origin ~0 ∈ R3 or
of the plane {x3 = 0} and a rigid motion φ such that UΓ is arbitrarily close (by taking
n large enough) to φ(E), where E is the intersection of Ẽ with the region between two
spheres of large radii centered at ~0, so that Γ corresponds through φ to the intersection of
E with the inner sphere, see Figure 5. In particular, the normal vector to Ω̂k,n(r) along Γ
lies in an arbitrarily small open disk in the sphere, centered at the image by φ of the limit
normal vector to E. In the case Ẽ is the end of a catenoid, the compact subdomain E can
be chosen as the intersection of Ẽ with a slab of the type {(x1, x2, x3) | a ≤ x3 ≤ b}, for
0 < a < b large. For a fixed and b > a arbitrarily large, the sublinearity of the growth of
the third coordinate function on Ẽ implies that if a plane Π1 ⊂ R3 touches E at a point
of {x3 = a} and leaves E at one side of Π1, then Π1 must be arbitrarily close to vertical
in terms of a. Therefore, if a plane Π ⊂ R3 touches Ω̂k,n(r) along Γ and leaves Ω̂k,n(r) at
one side of Π, then the orthogonal direction to Π must be arbitrarily close to ±φ(0, 0, 1).
A similar conclusion holds when Ẽ is the end of {x3 = 0}.
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Figure 5: Ω̂k,n(r) lies outside BΓ along Γ.

Since the number of components of ∂Ω̂k,n(r)−B(p, r) is bounded independently of n,
we deduce that the normal lines to Ω̂k,n(r) along its boundary curves other than γk,n(r) lie
on a collection D of arbitrarily small open disks in the projective plane P2, the number of
which is bounded independently of n. Consider a furthest point qn in ∂Ω̂k,n(r) to p. Pick a
line F in the projective plane which is disjoint from D but relatively close to a line parallel
to the line segment joining p and qn(this can be done by taking the radii of the disks in D
small enough). Consider the family of planes {Πh ⊂ R3 | h ∈ R} orthogonal to F , h being
the oriented distance to p. If we increase the parameter h, then Ω̂k,n(r) lies entirely at
one side of the plane Πh0 where h0 = dist(p, qn), and the maximum principle insures that
Πh0 intersects the Ω̂k,n(r) at a point x ∈ ∂Ω̂k,n(r) − B(p, r). Then the argument in the
last paragraph implies that F lies in D, a contradiction. This proves {Mk,n}n is locally
simply connected in R3 − {p1, . . . , pl}.

Consider for each i = 1, . . . , l a ball Bi centered at pi, whose radius is much smaller
than the minimum distance between pairs of distinct points pj , ph with j, h = 1 . . . , l. We
claim that for each i, the components of M̂k,n in Bi are disks for n large. To see this,
suppose that for a given i = 1, . . . , l, there exists a simple closed curve γk,n ⊂ M̂k,n ∩ Bi

which does not bound a disk on M̂k,n ∩Bi. As the radius of Bi can be assumed to be less
than 1, γk,n must bound a disk in M̂k,n. Now the same proof that we used to prove the
locally simply connected property of {Mk,n}n in R3 − {p1, . . . , pl} gives a contradiction,
thereby proving our claim.

As in the proof of Lemma 4, for the fixed value k, define the sequence of compact
minimal surfaces {Tn = Mk.n ∩ (B(n) − B1,n)}n. After replacing by a subsequence, the
arguments in the proof of Lemma 4 using Theorem 3 imply that the Tn converge to a
nonsingular minimal lamination L of R3 − {p1, ...pl} and that the associated nonsingu-
lar minimal lamination L of R3 consists of a family of horizontal planes. If S(L) = Ø
or if S(L) ∩ B(3) = Ø, then the related arguments given in Lemma 4 generalize in a
straightforward manner to give a contradiction. Thus, we may assume S(L) ∩ B(3) 6= Ø.

Statement 7 in Theorem 3 implies L is a foliation of R3 by horizontal planes with
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S(L) containing one or two lines orthogonal to the planes in L. Again, the arguments in
Lemma 3 imply that S(L) contains a single line. Let ε = 1

3 min{1, dR3(pi, pj)}i 6=j . As in the
proof of Lemma 4, there exists a simple closed homotopically nontrivial curve in M̂k,n which
is contained in B(2) and which is disjoint from the collection of balls {B(p, ε), ...,B(pl, ε)}.
As in the proof of Lemma 4, for n large, there exists a main component Cn of the surface
Tn ∩ (B(4) −

⋃l
i=1 B(pi, ε)) which contains Γn. For each i, and for n large, Cn intersects

∂B(pi, ε) in a long simple closed when pi ∈ S(L) or in a large number of almost-horizontal
closed curves in ∂B(pi, ε) when pi /∈ S(L). It follows that M̂2,n ∩ B(4) consists of disks,
which contradicts the existence of Γn. Thus, the set of points {p1, . . . , pl} is in fact empty,
or equivalently, the first statement in Lemma 5 holds.

To finish the proof of Lemma 5, we only need to follow the arguments in the last
paragraph of the proof of Lemma 4 with a straightforward modification in order to deduce
that {Mk,n}n is locally simply connected in R3 and that the final statement in Lemma 5
holds (this modification only uses the ideas in the second paragraph of the proof of the
present lemma). 2

We can continue this inductive process indefinitely and using a diagonal subsequence,
we will obtain an infinite sequence {Lk}k∈N of nonsimply connected properly embedded
minimal surfaces, each one satisfying one of the properties (1) or (2). For each fixed
k ∈ N, Lk ∩B(Rk) is the limit under homotheties and translations of compact domains of
M(n) which are contained in balls B̂n,k . Moreover, B̂n,k is disjoint from B̂n,k′ for k 6= k′.

Since the genus of M(n) is fixed and finite, for k large the surface Lk has genus zero;
hence, by the López-Ros Theorem [22], Lk is a catenoid. Fix k0 such that for every k ≥ k0,
Lk is a catenoid. Given k ≥ k0, there exists an integer n(k) such that for all n ≥ n(k), we
may assume that M(n) ∩ B̂n,k0 , . . . , M(n)∩ B̂n,k are close to k − k0 catenoids. For these
k, n and for any integer k′ with k0 ≤ k′ ≤ k, let Γn,k′ be the unique closed geodesic in
M(n) ∩ B̂n,k′ which, after scaling and translation, converges to the waist circle of Lk′ as
n → ∞.

Lemma 6 For any m ∈ N, there exists k ≥ k0 such that at least m of the curves Γn(k),k′ ⊂
M(n(k)) ∩ B̂n(k),k′ separate M(n(k)) where k0 ≤ k′ ≤ k.

Proof. If the lemma were to fail, then for any k ≥ k0, there would be a bound on the
number of the curves Γn(k),k′ which separate M(n(k)). Since the genus of M(n(k)) is
independent of k, for k sufficiently large there exist three of these Γn(k),k′ curves which
bound two consecutive annuli in the conformal compactification M(n(k)) of M(n(k)).
More precisely, we find Γ1, Γ2, Γ3 of the nonseparating curves Γn(k),k′ so that Γ1 ∪ Γ3

bounds an annulus in M(n(k)) and Γ2 lies in the interior of this annulus and is topologically
parallel to Γ1 and Γ3. Furthermore, we can choose Γ1, Γ2, Γ3 so that each of the three
components of M(n(k))− (Γ1 ∪ Γ2 ∪ Γ3) contains at least two ends of M(n(k)).
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We first show that Γ1, Γ2, Γ3 all bound disks on the same closed complement of M(n(k))
in R3. If not, we may assume without loss of generality that Γ1 and Γ2 bound disks on
opposite sides of M(n(k)). Let Ω ⊂ M(n(k)) be the planar domain bounded by Γ1 ∪ Γ2.
Consider the union of Ω with the topological disk D2 that Γ2 bounds. After a small
perturbation of Ω ∪ D2 that fixes Γ1, we obtain a new surface Σ contained in the closure
W of the component of R3 − M(n(k)) where Γ1 is not homologous to zero, such that
Σ ∩ M(n(k)) = Γ1. The union of Σ together with a disk bounded by Γ1 in R3 − W

is a properly embedded surface that intersects M(n(k)) only along Γ1. This implies Γ1

separates M(n(k)), which is contrary to our hypothesis. Therefore, Γ1, Γ2, Γ3 all bound
disks on the same closed complement of M(n(k)) in R3, a closed region that we will call
W1.

Since none of the closed curves Γ1, Γ2, Γ3 separate M(n(k)), we conclude that none of
them bound properly embedded surfaces in the closure W of R3 − W1. As Γ1 ∪ Γ2 ⊂ ∂W
bounds a connected noncompact orientable surface in W (which is part of M(n(k))) and
∂W is a good barrier for solving Plateau problems in W , a standard argument [31, 32]
insures that there exists a noncompact connected orientable least-area surface Σ(1, 2) ⊂ W

with boundary ∂Σ(1, 2) = Γ1 ∪ Γ2. In a moment we will show that Σ(1, 2) has one
end, which, by our initial choices of Γ1, Γ2, Γ3 and the maximum principle, implies that
Σ(1, 2)∩ ∂W = Γ1 ∪ Γ2.

Recall that the closed curves Γ1, Γ2, Γ3 are the unique closed geodesics in the intersec-
tion of M(n(k)) with disjoint balls B1, B2, B3 and that M(n(k))∩ Bi can be assumed to
be arbitrarily close to a large region of a catenoid Ci centered at the center of Bi (and
suitably rescaled), i = 1, 2, 3. In order to check that Σ(1, 2) has exactly one end, let X be
the nonsimply connected region of B1 −M(n(k)) which lies between two coaxial cylinders
with axis the axis of C1 and radii R

3 , R
2 where R denotes the radius of B1, see Figure 6.

By curvature estimates for stable surfaces, the portion of Σ(1, 2) contained in X consists
of almost flat graphs parallel to the almost flat graphs defined by the catenoid C in the
boundary of X . Since the surface Σ(1, 2) is area minimizing in W , there is only one such
an annular graph. A similar description can be made for Σ(1, 2) in the ball B2. After
removing the portion of Σ(1, 2) inside the innermost cylinder in each of these balls, we
obtain a connected noncompact stable minimal surface Σ̃(1, 2) whose Gauss map G̃ along
each boundary curve lies in a small neighborhood of the limiting normal directions of the
corresponding forming catenoid. Since the surface Σ̃(1, 2) is stable and connected, it fol-
lows that G̃(Σ̃(1, 2)) is contained in a small neighborhood U of a point in S2 (in particular,
the two forming catenoids in B1, B2 are almost parallel). Since Σ̃(1, 2) lies in the comple-
ment of M(n(k)), then the values of G̃ at the ends of Σ̃(1, 2), which are the North or the
South poles, also lie in U . Thus, the forming catenoids inside B1, B2 are approximately
vertical and Σ̃(1, 2) is an almost horizontal graph over its projection to the (x1, x2)-plane.
In particular, Σ(1, 2) has exactly one end and so, Σ(1, 2) intersects ∂W ⊂ M(n(k)) only
along ∂Σ(1, 2).
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Figure 6: The normal line to Σ(1, 2)∩ X is close to the limit normal line to C1.

Note that Σ(1, 2) separates W into two regions. Let W ′ be the closed complement of
Σ(1, 2) in W which contains Γ3 in its boundary. Let Γ′

2 ⊂ M(n(k)) ∩ B2 be an ε-parallel
curve to Γ2 in ∂W ′. Since Γ′

2 ∪ Γ3 bounds a connected noncompact surface in ∂W ′,
Γ′

2 ∪ Γ3 also bounds a connected noncompact orientable least-area surface Σ(2, 3) ⊂ W ′.
Note that Σ(2, 3) intersects ∂W ′ only along Γ′

2 ∪ Γ3 as was the case for Σ(1, 2). The
previous arguments imply that outside the balls B2, B3, the surface Σ(2, 3) is an almost flat,
almost horizontal graph over its projection to the (x1, x2)-plane. Let Σ be the connected
noncompact piecewise smooth surface consisting of Σ(1, 2)∪Σ(2, 3)∪D1∪D3∪A(Γ2, Γ′

2),
where for i = 1, 3, Di is a disk in R3 − W bounded by Γi and A(Γ2, Γ′

2) ⊂ M(n(k)) is the
compact annulus bounded by Γ2∪Γ′

2. The surface Σ separates R3 into two regions, one of
which we call W ′′, where W ′′ contains in its interior the connected component ∆(1, 3) of
M(n(k)) − (Γ1 ∪ Γ3) which is disjoint from Γ2. Note that ∆(1, 3) separates W ′′. Let W1

be the closed complement of ∆(1, 3) in W ′′ in which Γ1 is not homologous to zero. Let
Γ′

1, Γ
′
3 ⊂ M(n(k)) be ε-parallel curves to Γ1, Γ3 in ∂W1. Let Σ(1, 3) ⊂ W1 be a properly

embedded noncompact orientable least-area surface with boundary Γ′
1 ∪ Γ′

3. Note that
Σ(1, 3) is connected because neither Γ′

1 nor Γ′
3 separate M(n(k)). As before, Σ(1, 3) has

exactly one end which is an almost horizontal graph. The end of this graph lies between
the ends of the two horizontal annular ends of Σ since it lies in W1 ⊂ W ′′, see Figure 7.

We now obtain the desired contradiction. Consider the surface Σ̃(1, 3) = Σ(1, 3) ∪
D′

1 ∪ D′
3, where D′

i is a disk in R3 − W bounded by Γ′
i, i = 1, 3. The surface Σ̃(1, 3) is

properly embedded in R3 and Σ̃(1, 3)∩Σ = Ø, hence, Σ must lie on one side of Σ̃(1, 3) in
R3. However, since the graphical end of Σ̃(1, 3) lies between two graphical ends of Σ, we
obtain a contradiction and the lemma is proved. 2

We now complete the proof of Theorem 1. By Lemma 6, for any m there exists k ≥ k0

such that at least m of the k−k0 closed geodesics of the type Γn(k),k′ ⊂ M(n(k))∩ B̂n(k),k′
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Figure 7: Producing a contradiction with three nonseparating curves Γ1, Γ2, Γ3 ⊂
M(n(k)).

separate M(n(k)), k0 ≤ k′ ≤ k. These m curves Γn(k),k′ can be assumed to be arbitrarily
close to the waist circles of suitable rescaled large compact regions of m disjoint catenoids.
In particular, M(n(k)) has nonzero flux along any of these curves, and the separating
property implies that such flux vectors are all vertical (any separating curve in M(n(k))
with nonzero flux must be homologous to a finite positive number of ends of M(n(k)),
which have vertical flux). Therefore, the m forming catenoids inside M(n(k)) are all
vertical. Now exchange the geodesics Γn(k),k′ by planar horizontal convex curves Γ̃n(k),k′

in M(n(k)), which can be chosen arbitrarily close to the corresponding Γn(k),k′ . Since the
genus of M(n(k)) is fixed and finite, we can take m large enough so that at least two of
these planar curves, say Γ̃1, Γ̃2, bound a noncompact planar domain Ω inside M(n(k))
and bound planar horizontal disks in the same complement of M(n(k)) in R3. Since Ω
has vertical catenoidal and/or planar ends, the López-Ros deformation [22, 35] applies to
give the desired contradiction. This finishes the proof of the theorem.
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