1. Let P be a finite additive set function defined over algebra \mathcal{A}, with $P(\Omega) = 1$, $P(A) \geq 0$, for any $A \in \mathcal{A}$. Show that the following four conditions are equivalent:

(1) P is σ-additive (i.e. P is a probability measure);

(2) P is continuous from below: i.e. for any $A_1, \cdots, A_n, \cdots \in \mathcal{A}$, s.t. $A_n \subseteq A_{n+1}$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$,

\[
\lim_{n \to \infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n) = P(\lim_{n \to \infty} A_n)
\]

(3) P is continuous from above: i.e. for any $A_1, \cdots, A_n, \cdots \in \mathcal{A}$, s.t. $A_n \supseteq A_{n+1}$ and $\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$,

\[
\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n) = P(\lim_{n \to \infty} A_n)
\]

(4) P is continuous at the empty set \emptyset, i.e. for any $A_1, \cdots, A_n \in \mathcal{A}$, $A_n \subseteq A_{n+1}$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$,

\[
\lim_{n \to \infty} P(A) = P(\lim_{n \to \infty} A_n) = P(\emptyset) = 0
\]

2. Find two random variables X and Y such that $E[XY] = E[X] \cdot E[Y]$ but X and Y are not independent.

3. Suppose X, Y are two random variables with joint p.d.f $f(x, y)$. Show that the density of $U = X + Y$ is given by the formula

\[F_U(u) = \int_{-\infty}^{\infty} f(u - v, v)dv.\]

Hint: Use the change of variable formula.

4. Consider the random variable X with density $f(x) = \frac{1}{4}e^{-x} + \frac{3}{2}e^{-2x}$. Write down an algorithm to simulate the random variable X (it should use only random numbers).

5. Let X be a random variable and A_n be a sequence of sets in Ω. IF $E[|X|] < \infty$ and $P[A_n] \to 0$, show that

\[
\lim_{n \to \infty} \int_{A_n} X(\omega)P(d\omega) = 0.
\]

6. In coin-tossing, let s be any sequence of H,T with length k. Denote

\[A_n = \{\omega : (\omega_n, \cdots, \omega_{n+k-1}) = s\}, \quad 0 < P(H) < 1\]

Show that $P(A_n, i.o.) = 1$. (Hint: you need to construct a sequence of independent random variables first.)

7. (a) Show that if $X_n \to X$ in probability then $X_n \to X$ in distribution.

(b) By giving a counterexample, show that $X_n \to X$ in distribution does not imply $X_n \to X$ in probability.
8. Assume that \(\phi(t) \) is the characteristic function of a random variable. Prove that \(|\phi(t)|^2 \) is also the characteristic function of a random variable. Let \(\phi(t) \) be the characteristic function of a random variable \(X \). Assume that \(\phi'(t) \) exists for all \(t \) in some neighborhood of 0.
(a) Assume that
\[
\lim_{t \to 0} \frac{\phi(t) - 1}{t^2} = \frac{1}{2} \sigma^2 > -\infty
\]
Prove that \(E(X) = 0 \) and \(E(X^2) = \sigma^2 \). (Hint. Using the assumptions, determine the value of \(\phi'(0) \) and using L'Hopital’s Rule, prove that \(\phi''(0) \) exists and calculate its value.

9. Let \(\Omega = \mathbb{N} \). Define \(N_n(E) = |E \cap \{0, 1, \cdots, n\}| \). Let \(C \) be the collection of sets such that
\[
C = \{E \subset \Omega | \lim_{n \to \infty} \frac{N_n(E)}{n} \text{ exists } \}.
\]
Show that \(C \) is not a \(\sigma \)-field. Give an example of \(E \in \Omega \) that is not in \(C \).

10. Let \(X \) and \(Y \) be two independent random variables. If \(\mathbb{E}[X] < \infty \), show that for any Borel set \(B \),
\[
\int_{Y \in B} X(\omega) \mathbb{P}(d\omega) = \mathbb{E}[X] \mathbb{P}[Y \in B].
\]

11. Let \(X_n \) be a sequence of random variables. If
\[
\sum_n \mathbb{P}(|X_n| < n) < \infty,
\]
show that
\[
\limsup_{n \to \infty} \frac{|X_n|}{n} \leq 1
\]
almost surely.

12. Prove Slutsky’s theorem: If \(X_n \to X \) in distribution, \(Y_n \to c \) in probability for some \(c \in \mathbb{R} \), then \(X_n + Y_n \to X + c \) in probability.

13. Let \(X_1, X_2, \cdots \) be i.i.d nonnegative random variables such that \(\mathbb{E}[X_1] = 1 \) and \(\text{Var}[X_1] = 1 \). Let \(S_n = X_1 + \cdots + X_n \). Show that \(2(\sqrt{S_n} - \sqrt{n}) \to N(0, 1) \) in distribution.

14. Let \(X_n \) be a Poisson random variable with parameter \(n \). Show that \(\frac{X_n - n}{\sqrt{n}} \) converge in distribution to a standard normal random variable.

15. Assume that \(T_i, i = 1, 2, \cdots \) are IID random variables with such that \(\mathbb{E}[T_i] < \infty \) and \(0 < T_i < \infty \) with probability 1. Let \(S_n = T_1 + \cdots + T_n \).
\[
N_t = \sum_{n=1}^{\infty} I_{\{S_n \leq t\}}.
\]
(1)

Show that, almost surely,
\[
\lim_{t \to \infty} \frac{N_t}{t} = \frac{1}{\mathbb{E}[T_1]}
\]
(2)
16. Two individuals A and B require a heart transplant and and the remaining time they will live without such a transplant is exponential distributed with mean μ_A and μ_B respectively. Individual A is first on the list to receive a transplant and B is second, provided of course they are still alive when a heart is available.

New hearts become available according to a Poisson process with rate λ. Compute

(a) The probability that A receives a new heart.
(b) The probability that B receives a new heart.

17. A process moves on the integers $S = \{1, \ldots, N\}$. Starting with 1 the process moves to an integer greater than its present position and with equal probability to any greater integer. The state N is absorbing. Find the expected number of steps until reaching N.

18. Suppose $P(x, y)$ is the transition matrix of an irreducible Markov chain on the state space S. A function $f : S \to \mathbb{R}$ is *harmonic* at x if

$$ f(x) = Pf(x) = \sum_y P(x, y)f(y) \quad (3) $$

Show that if f is harmonic at every point $x \in S$ then f is constant.

19. Suppose that X_t is Poisson process with rate λ and that each event can be characterized as type I with probability p or type II with probability $(1 - p)$. Let X^I_t and X^{II}_t be the number of events of type I and II respectively up to time t. Show that X^I_t and X^{II}_t are independent Poisson process with rate λp and $\lambda(1 - p)$.

20. Let Z_n be a sequence of independent geometric random variables, i.e. for $k \geq 0$ $P(Z_n = k) = (1 - p)^k p$. Let $X_n = \max(X_0, Z_1, Z_2, \cdots, Z_n)$ where X_0 is a random variable independent of Z_n, $n \geq 1$. Show that Z_n is a Markov chain and compute its transition probabilities. Does the Markov chain has a stationary distribution?

21. A cat C and a mouse M are moving everyday from room 1 to room 2 according to a Markov chain with respective transition matrices

$$ P_C = \begin{pmatrix} 0.2 & 0.8 \\ 0.5 & 0.5 \end{pmatrix}, \quad P_M = \begin{pmatrix} 0.6 & 0.4 \\ 0.1 & 0.9 \end{pmatrix} $$

(a) In the long run how often are the cat and the mouse in the same room.
(b) Today C is in room 1 while M is in room 2. Compute the expected time until they are in the same room.
(c) Today C is in room 1 while M is in room 2. Compute the probability that they first meet in room 1.

22. In a certain game that ends up in 1=Win, 2=Tie, 3=Loose, a certain team performance is modeled by a Markov chain transition matrix

$$ P = \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.4 & 0.4 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{pmatrix}. $$

For each win each player get $1000 and for each tie $200. In addition if there is two wins a row each player player gets an additional $1000. In the long run how much does a player win per game.
23. Consider the nearest neighbor random walk on \(\mathbb{Z} \) with \(P(j, j + 1) = p \) and \(P(j, j - 1) = (1 - p) \).
Show that the random walk is recurrent if and only if \(p = \frac{1}{2} \).

24. Consider the birth and death process \(X_t \) with birth rate \(\lambda_n = n\lambda + \alpha \) and death rate \(\mu_n = m\mu \).

 (a) Derive differential equation for the mean \(m(t) = E[X_t] \) and the variance \(v(t) = E[X_t^2] - m(t)^2 \) and solve them.

 (b) Determine for which value of \(\lambda, \mu, \) and \(\alpha \) the Markov chain \(X_t \) is recurrent.

25. If a given individual is alive at some time \(t \), its additional life length is exponentially distributed with parameter \(\lambda \). Upon death an individual has \(k \) offsprings with probability \(k \) (assume for simplicity \(p_1 = 0 \)). Assume all individuals acts independently of each other and of the history of the process.

 (a) Let \(X_t \) denote the population at time \(t \), compute the generator of the process and write down a set of differential equations for \(p_j(t) = P(X_t = j) \).

 (b) Consider the binary splitting case where either an individual dies without offspring or leaves exactly two offsprings. Find the stationary distribution for \(X_t \).

26. Let \(S \) be a countable state space and \(Z_n, n = 1, 2, 3, \ldots \) be a sequence of independent identically distributed random variable taking value in some space \(E \).

 (a) Show that if \(f : S \times E \to S \) is a function and \(X_0 \) is independent of all the \(Z_n \) then

 \[
 X_n = f(X_{n-1}, Z_n)
 \]

 defines a Markov chain.

 (b) Conversely show that any Markov chain on \(S \) can written in the form (4).

 \(\textit{Hint:} \) Take \(Z_n \) to random numbers and think of simulation algorithms.