Work all problems and show all work. Explain your answers. State the theorems used whenever possible. 70 points are required to pass.

1. Let \(\{Y_n\}_{n \geq 1} \) be a sequence of real-valued random variables and \(Y \) be another real-valued random variable. Suppose that \(Y_n \) has distribution function \(F_n(y) \) for each \(n \) and \(Y \) has distribution function \(F(y) \).

 (a) (3 points) State the definition of convergence in probability (denoted as \(Y_n \overset{P}{\to} Y \)).

 (b) (3 points) State the definition of convergence in quadratic mean (denoted as \(Y_n \overset{qm}{\to} Y \)).

 (c) (3 points) State the definition of convergence in distribution (denoted as \(Y_n \overset{d}{\to} Y \)).

 (d) (5 points) Show that \(Y_n \overset{qm}{\to} c \) if and only if \(EY_n \to c \) and \(\text{Var}Y_n \to 0 \) for a constant \(c \).

 (e) (6 points) Show that if \(Y_n \overset{d}{\to} Y \), then \(Y_n = O_p(1) \) (i.e., for every \(\epsilon > 0 \), there exist \(M \) and \(N \) such that \(P(|Y_n| > M) < \epsilon \) for \(n > M \)).

2. Suppose that \(X_1, \ldots, X_n \) are independent but not identically distributed random variables with \(E(X_i) = \mu \) and \(\text{Var}(X_i) = \sigma_i^2 \) where \(i = 1, \ldots, n \). Consider two estimators for \(\mu \) :

 \[\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{and} \quad \hat{\mu}_2 = \frac{\sum_{i=1}^{n} X_i/\sigma_i^2}{\sum_{j=1}^{n} 1/\sigma_j^2}. \]

 (a) (5 points) What is a sufficient condition for which \(\hat{\mu}_1 \) is consistent for \(\mu \)?

 (b) (5 points) What is a sufficient condition for which \(\hat{\mu}_2 \) is consistent for \(\mu \)?

 (c) (10 points) Which estimator is preferable for estimating \(\mu \)? Justify your answer.

3. Answer the following questions.

 (a) (5 points) Suppose \(X_1, X_2, \ldots, \) is a stationary sequence with \(E(X_i) = \mu \) and \(\text{Var}(X_i) = \sigma_i^2 < \infty \). Then we know that

 \[\sqrt{n}(\bar{X}_n - \mu) \overset{d}{\to} N(0, \tau^2), \]

 where \(\tau^2 \) is finite and

 \[\tau^2 = \lim_{n \to \infty} \left[\sigma^2 + \frac{2}{n} \sum_{i=1}^{n} (n-i)\text{Cov}(X_1, X_{1+i}) \right]. \]

 Suppose that we further assume that \(X_1, X_2, \ldots, \) is a stationary \(m \)-dependent sequence with \(E(X_i) = \mu \) and \(\text{Var}(X_i) = \sigma_i^2 < \infty \). Then what is the limiting distribution of \(\sqrt{n}(\bar{X}_n - \mu) \)?
(b) (10 points) Suppose X_0, X_1, \ldots is an iid sequence of Bernoulli trials with success probability p. Suppose X_i is the indicator of your team’s success on rally i in a volleyball game. (Note: This is a completely unrealistic model, since the serving team is always at a disadvantage when evenly matched teams play.) Your team scores a point each time it has a success that follows another success. Let $S_n = \sum_{i=1}^{n} X_i$ denote the number of points your team scores by time n. Find the asymptotic distribution of S_n.

4. Let Y_1, \ldots, Y_n be independent and identically distributed from a distribution with density function $f_\theta(y) = \theta/y^{\theta+1}$ where $y > 1$ and $\theta > 2$. Note that $E(Y_i) = \theta/(\theta - 1)$ and $Var(Y_i) = \theta/[(\theta - 2)(\theta - 1)^2]$. Assume that the regularity conditions necessary for asymptotic consistency and efficiency are satisfied.

(a) (5 points) Obtain the maximum likelihood estimator of θ, denoted as $\hat{\theta}_n$, and find the limiting distribution of $\hat{\theta}_n$.

(b) (9 points) Obtain the Bayesian estimator $\hat{\theta}_B^n$ equal to the posterior mean of θ under the Jeffreys prior, and find the limiting distribution of $\hat{\theta}_B^n$.

(c) (9 points) Consider an estimator $\tilde{\theta}_n = (n + c)/\sum_{i=1}^{n} \log Y_i$ where c is a constant. Find the limiting distribution of $\tilde{\theta}_n$. [Hint] $E(\log Y_i) = 1/\theta$ and $Var(\log Y_i) = 1/\theta^2$.

5. Suppose $Y_n \sim \text{Binomial}(n, p)$. We want to test $H_0 : p = p_0$ against $H_1 : p > p_0$.

(a) (3 points) Prove that under $H_0 : p = p_0$,
\[
\frac{\sqrt{n}(Y_n/n - p_0)}{\sqrt{p_0(1 - p_0)}} \xrightarrow{d} Z,
\]
where Z is the standard normal distribution with mean 0 and variance 1.

(b) (3 points) Suppose that we reject $H_0 : p = p_0$ whenever
\[
Y_n/n \geq p_0 + u_\alpha\sqrt{p_0(1 - p_0)/n}
\]
where u_α is the $1 - \alpha$ quantile of the standard normal distribution. Show that this test has asymptotic level α using (a).

(c) (10 points) Find a sufficient condition under which the following asymptotic result holds for the alternatives $\{p_n\}$ satisfying $p_n > p_0$ for all n:
\[
\frac{\sqrt{n}(Y_n/n - p_n)}{\sqrt{p_n(1 - p_n)}} \xrightarrow{d} Z,
\]
where p_n means that the success probability depends on n.

(d) (6 points) Suppose that $p_n > p_0$ for all n and $\sqrt{n}(p_n - p_0) \to \delta > 0$. Let $Power_n(p_n)$ be the power of this test against the alternative p_n. Show that
\[
Power_n(p_n) \to \Phi\left(\frac{\delta}{\sqrt{p_0(1 - p_0)}} - u_\alpha\right) \text{ as } n \to \infty
\]
where $\Phi(x)$ denotes the cumulative distribution function of the standard normal distribution.