Passing Standard: The passing standard is 70% with essentially correct solutions to five problems. Show all your work and justify your answers carefully. All rings contain the identity and all ring homorphisms preserve the identity.

1. **Group theory**
 1. Construct a non-abelian group of order 75.
 2. Let G be the group $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p^3\mathbb{Z}$, where p is a prime.
 (1) Determine the number of cyclic subgroups of G of order p^3.
 (2) Determine the number of subgroups (not necessarily cyclic) of G of order p^3.

2. **Ring theory**
 3. Let $f : R \to S$ be a homomorphism of commutative rings.
 (1) Show that if P is a prime ideal of S, then its preimage $f^{-1}(P)$ is a prime ideal of R.
 (2) Show that if f is surjective and M is a maximal ideal of S, then its preimage $f^{-1}(M)$ is a maximal ideal of R.
 (3) Give an example of a non-surjective $f : R \to S$ and a maximal ideal M of S such that $f^{-1}(M)$ is not a maximal ideal of R.

4.
 (1) Let R be an integral domain, and let $I \subset R$ be a principal ideal. Prove that the R-module $I \otimes_R I$ has no torsion elements.
 (2) What if R is not an integral domain? Either prove the statement or give a counterexample.

5. Let A be a 2×2 matrix with entries in \mathbb{Q}. Assume that $A^3 = I$, the 2×2 identity matrix, yet $A \neq I$.
 (1) Find the rational canonical form of A.
 (2) Find the Jordan canonical form of A, thought of as a matrix over \mathbb{C}.

3. **Field theory**
 6.
 (1) Compute the minimal polynomial of $\alpha = \sqrt{2} + \sqrt{2}$.
 (2) Compute the Galois closure K of the extension $\mathbb{Q}(\alpha)/\mathbb{Q}$, and all subfields of K.

7. Let F denote a finite field of order 2^n for some $n \geq 1$. Determine all n such that the polynomial $x^2 + x + 1$ is irreducible in $F[x]$.
Reference
Let $f = x^4 + px^2 + qx + r$. The discriminant of f is
$$16p^4r - 4p^3q^2 - 128p^2r^2 + 144pq^2r - 27q^4 + 256r^3.$$ The resolvent cubic of f is
$$x^3 - 2px^2 + (p^2 - 4r)x + q^2.$$