Work all problems. 60 points are needed to pass at the Masters Level and 75 to pass at the Ph.D. level.

1. Suppose a cell phone is missing and it is presumed that it was equally likely to have gone missing in any of 3 possible classrooms. Let \(\theta_i \) denote the “overlook” probability that the cell phone is not found upon a search of classroom \(i \) given that it is actually in classroom \(i \), for \(i = 1, 2, 3 \). Thus, \(1 - \theta_i \) is the probability that the cell phone is found in classroom \(i \) upon a search of the classroom \(i \), given that it is actually there. What is the conditional probability that the cell phone is in classroom 1, given that the search of classroom 1 was unsuccessful?

2. The random vector \((Y, Z)^T \) follows a bivariate Normal distribution with mean vector \((0, 0)^T\) and covariance matrix \(\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \), and its probability density function is

\[
f(y, z) = \frac{1}{2\pi \sqrt{1 - \rho^2}} \exp \left[-\frac{y^2 - 2\rho y z + z^2}{2(1 - \rho^2)} \right].
\]

(a) Show that the conditional distribution of \(Y \) given \(Z \) is a normal distribution with mean \(\rho Z \) and variance \(1 - \rho^2 \).

(b) Describe the behavior of the conditional distribution of \(Y \) given \(Z \) (including its mean and variance) as \(|\rho| \) approaches 1.

(c) Define \(U = Y + Z \) and \(V = Y - Z \). Obtain the marginal distributions of \(U \) and \(V \), respectively.

(d) Compute the covariance between \(U \) and \(V \), \(\text{Cov}(U, V) \). Are \(U \) and \(V \) independent? Justify your answer.

3. Suppose that \(X \) is a Bernoulli random variable from Bernoulli trial with the success probability \(\theta \), denoted as \(X \sim \text{Bernoulli}(\theta) \), where \(0 < \theta < 1 \). A generalization of the Bernoulli distribution is to allow the success probability to vary from trial to trial, keeping the trials independent :

\[
X_i \mid \Theta_i \sim \text{Bernoulli}(\Theta_i), \ i = 1, \ldots, n,
\]

\[
\Theta_i \sim \text{Beta}(\alpha, \beta)
\]

where \(\Theta_i \) is a Beta random variable with the probability density function

\[
f(\Theta) = \frac{1}{B(\alpha, \beta)} \Theta^{\alpha-1}(1 - \Theta)^{\beta-1},
\]
\(\alpha, \beta > 0\) and \(B(\alpha, \beta)\) is a normalization constant to ensure that \(f(\Theta)\) is the probability density function. Note that the mean and variance of \(\Theta\) are \(E(\Theta) = \frac{\alpha}{\alpha + \beta}\) and \(Var(\Theta) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}\), respectively.

A random variable of our interest is the total number of successes, \(Y = \sum_{i=1}^{n} X_i\).

(a) Compute the mean of \(Y\), \(E(Y)\).

(b) Compute the variance of \(Y\), \(Var(Y)\).

4. A real-valued random variable \(X\) is said to follow the Weibull distribution with scale \(\lambda \in (0, \infty)\) and shape \(k \in (0, \infty)\), denoted as \(\text{Weibull}(\lambda, k)\), if it has distribution function \(F(x; \lambda, k)\) given by

\[
P(X \leq x; \lambda, k) = F(x; \lambda, k) = 1 - e^{-(x/\lambda)^k}
\]

for \(x > 0\), and 0 otherwise, and density function \(f(x; \lambda, k)\) given by

\[
f(x; \lambda, k) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}
\]

again for \(x > 0\), and 0 otherwise.

Suppose that \(X_1, X_2, \ldots\) is a sequence of IID \(\text{Weibull}(\lambda, k)\) random variables.

(a) Show that (i) \(E[X_i] = \lambda^k\) and (ii) \(\text{Var}(X_i) = \lambda^{2k}\). (Hint: what is the distribution of \(X_i^k\)?)

Suppose that \(k\) is known. Define the statistic \(\hat{\lambda}_n := \left[\frac{1}{n} \sum_{i=1}^{n} X_i^k\right]^{1/k}\).

(b) Show that \(\hat{\lambda}_n \xrightarrow{p} \lambda\). (Hint: first show that \(\hat{\lambda}_n^k \xrightarrow{p} \lambda^k\).)

(c) Show that \(n^{1/2} \left(\hat{\lambda}_n - \lambda\right) \xrightarrow{d} N(0, v)\), and find the constant \(v\). (Hint: first show that \(n^{1/2} \left(\hat{\lambda}_n^k - \lambda^k\right) \xrightarrow{d} N(0, v')\).

(d) Find the distribution of \(\min\{X_1, \ldots, X_n\}\).

5. Suppose that \(X_1, X_2, \ldots\) is a sequence of IID random real-valued variables with mean \(\mu\) and variance \(\sigma^2 \in (0, \infty)\). Consider the \(t\)-statistic

\[
T_n = \frac{\sqrt{n} \left(\overline{X}_n - \mu\right)}{S_n},
\]

where \(\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i\) and \(S_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2\).

(a) Show that \(\sqrt{n} \left(\overline{X}_n - \mu\right)\) converges in distribution, and find its limit distribution.

(b) Noting that \(S_n^2 = \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - (\overline{X}_n - \mu)^2\right]\), show that \(S_n^2 \xrightarrow{p} \sigma^2\).

(c) Show that \(T_n\) converges in distribution to \(N(0, 1)\).

(d) Let \(t_{k,\alpha}\) be the \(1 - \alpha\) quantile of the \(t\) distribution with \(k\) degrees of freedom, i.e. \(P(t_k \geq t_{k,\alpha}) = \alpha\) for \(t_k\) a \(t\)-distributed random variable with \(k\) degrees of freedom.

Assuming that \(t_{k,\alpha} \xrightarrow{d} z_\alpha\) as \(k \to \infty\), where \(z_\alpha\) is the \(1 - \alpha\) quantile of the \(N(0, 1)\) distribution, show that \(P(T_n \geq t_{n-1,\alpha}) \to \alpha\).