Do five of the following problems. All problems carry equal weight.

Masters: 60% with at least two substantially correct.

1. Consider the following Logistic model with harvesting

 \[\dot{x} = r x (K - x) - h, \]

 where \(K \) is the environment capacity, \(r \) is the growth rate, and \(h \) is the harvesting rate.

 (a) When \(h = 0 \), solve this equation with initial value \(x(0) = x_0 \).

 (b) Show that a bifurcation occurs at a certain value \(h_c \) and classify this bifurcation.

 (c) Draw the bifurcation diagram for different values of \(h \).

 (d) Discuss the asymptotic behavior of the population for \(h < h_c \) and \(h > h_c \) and give relevant biological interpretation.

2. Consider a predator-prey model

 \[\dot{x} = x(\alpha - \beta y) \]
 \[\dot{y} = y(-\gamma + \delta x), \]

 where \(\alpha, \beta, \gamma, \delta \) are positive constants, \(x, y \) represent prey and predator population respectively.

 (a) Find all equilibria of this model and classify their linear stabilities.

 (b) Show that there exists a function \(H(x, y) \) such that \(H \) is constant along a solution \((x(t), y(t)) \). (Hint: integrate

 \[\frac{-\gamma + \delta x}{x} \frac{dx}{dt} + \frac{\alpha - \beta y}{y} \frac{dy}{dt} = 0 \]

 on both sides.)

 (c) Show that every orbit is periodic. Find the average predator and prey population over the period \(T \). (Hint: for predator population, use

 \[\int_0^T dt \frac{\dot{x}(t)}{x(t)} = \int_0^T dt (\alpha - \beta y(t)). \]

3. The Lorenz system

 \[\dot{x} = \sigma(y - x) \]
 \[\dot{y} = \rho x - y - xz \]
 \[\dot{z} = xy - \beta z \]

 is a simplified model for atmospheric convections.
(a) Assume $0 < \rho < 1$, $\beta, \sigma > 0$. Find suitable numbers a, b, c such that

$$L = ax^2 + by^2 + cz^2$$

is a Lyapunov function for the origin.

(b) Explain why this system has no periodic orbit when $0 < \rho < 1$, $\beta, \sigma > 0$.

(c) Show that a pitchfork bifurcation occurs at $\rho = 1$, and two additional equilibria occurs for $\rho > 1$.

4. Solve explicitly the viscous Burgers equation as follows:

(a) Let $u = u(x, t) > 0$ be a solution of the heat equation

$$u_t - ku_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0,$$

where $k > 0$ is a constant. Show that

$$v(x, t) = \frac{2ku_x(x, t)}{u(x, t)},$$

solves the viscous Burgers equation

$$v_t + vv_x = kv_{xx}.$$

(b) Using (a), write an explicit formula for the solution $v = v(x, t)$ of the viscous Burgers equation with initial datum $v(x, t = 0) = \phi(x)$, where $\phi(x)$ is a smooth function.

5. (a) Find the steady-state solution to the wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad x \in [0, L], \quad (1)$$

if $u(x, t) = v(x) \sin(\omega t)$ with $u(x = 0, t) = 0$ and $u(x = L, t) = A \sin(\omega t)$. Assume that $\omega / c \neq m\pi / L$ for any $m = 1, 2, \ldots$.

(b) What happens when $\omega / c = m\pi / L$ for some $m = 1, 2, \ldots$?

6. Consider the diffusion equation

$$u_t = u_{xx},$$

with zero Dirichlet boundary conditions imposed on $x = 0$ and $x = 1$ as well as initial datum $u(x, t = 0) = x$. Solve the PDE by using the method of separation of variables, applying the boundary conditions and then the initial condition.

7. Suppose that $\rho(x, t)$ is the number density of cars evolving according to a traffic model

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0,$$

where u is the car speed. Let $u = 1 - \rho$.

(a) A queue is building up at a traffic light $x = 1$ at $t = 0$. Use the method of characteristics to solve the equation for the initial data

$$\rho(x, 0) = \begin{cases}
0 & x < 0 \text{ and } x > 1 \\
x & 0 \leq x \leq 1
\end{cases}$$

(b) Do solutions exist globally in time? Explain your answer and plot solutions for suitably selected typical times.