NAME:

Advanced Probability Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Thursday, January 17, 2019

Instructions

- 1. This exam consists of six (6) problems (each of equal weight 20). You need to solve 5 out of 6 problems and your grade will be evaluated using the five problems you choose (or the best five out of six problems if you decide to solve all the problems).
- 2. In order to pass this exam, it is enough that you solve essentially correctly at least three (3) problems and that you have an overall score of at least 65%.
- 3. State explicitly all results that you use in your proofs and verify that these results apply.
- 4. Please write your work and answers <u>clearly</u> in the blank space under each question.
- 5. The last page is empty and can be used if you need more space.

- 1. Let X and $\{X_n\}_{n=1}^{\infty}$ be random variables defined on a common probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Prove the following two statements:
 - (a) $X_n \to X$ almost surely if and only if $\mathbb{P}[|X_n X| > \varepsilon \text{ i.o.}] = 0$ for all $\varepsilon > 0$.
 - (b) $X_n \to X$ almost surely if and only if for every $\varepsilon > 0$, $\sum_{i=1}^{\infty} \mathbb{P}[|X_n X| > \varepsilon] < \infty$.

- 2. Let X, $\{X_n\}_{n=1}^{\infty}$, Y, and $\{Y_n\}_{n=1}^{\infty}$ be random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
 - (a) Prove or give a counterexample: If $X_n \to X$ in distribution and $Y_n \to Y$ in distribution, then $X_n Y_n \to XY$ in distribution.
 - (b) Prove or give a counterexample: If $X_n \to X$ in probability and $Y_n \to Y$ in probability , then $X_n^2 + \exp(Y_n) \to X^2 + \exp(Y)$ in probability.
 - (c) Prove that if $X_n \to X$ almost surely, then $X_n \to X$ in probability.

3. Let U_1, \ldots, U_{2n+1} be i.i.d. uniform random variables on [0,1]. The median (or central order statistic) of U_1, \ldots, U_{2n+1} has the density

$$f(x) = (2n+1) {2n \choose n} x^n (1-x)^n.$$
 (1)

Let X_1, \ldots, X_{2n+1} be i.i.d. exponential random variables with parameter $\lambda = 1$, i.e. the distribution function of X_i is $F(x) = \max\{0, 1 - \exp(-x)\}$. Compute the density of the median of X_1, \ldots, X_{2n+1} . You may use (1) without proof.

- 4. Let $\{X_n\}_{n=0}^{\infty}$ be an irreducible Markov chain with a countable state space S and transition probabilities P(i,j).
 - (a) Consider a state $i \in S$ and let $\tau^{(i)} = \inf\{n \geq 1, X_n = i\}$ denote the first return time to state i and let $Y^{(i)} = \sum_{n=0}^{\infty} I_{\{X_n = i\}}$ denote the total number of visits of the Markov chain to state i (I_A denotes the characteristic function of the set A).

Show that the three following definitions of "the state i is recurrent" are equivalent:

- i. $P\{\tau^{(i)} < \infty | X_0 = i\} = 1$.
- ii. If $X_0 = i$, then $Y^{(i)} = +\infty$ with probability 1.
- iii. $\sum_{n=0}^{\infty} P^n(i,i) = +\infty$
- (b) Show that if one state $i \in S$ is recurrent then any state $j \in S$ is recurrent.

5. (a) Let $\{X_n\}_{n=0}^{\infty}$ be a Markov chain with a finite state space S and transition probabilities P(i,j). Let us assume that the state j is absorbing and let $T^{(j)}=\inf\{n\geq 0\,;\,X_n=j\}$ denote the time until absorption.

Show that, for $i \neq j$, the expected time until absorption $\psi(i) = E[T^{(j)}|X_0 = i]$ satisfies the system of equation

$$\psi(i) = 1 + \sum_{k \neq j} P(i, k)\psi(k) \tag{2}$$

Hint: Condition on the first step.

(b) You want to compute the expected number of throws of a fair coin until you reach the pattern HTH = (Heads, Tail, Heads). To do this construct a Markov chain (with 4 states) and use part (a).

Hint: You may take the states to be \emptyset , H, HT, HTH.

- 6. Customers try to enter a (tiny) coffee shop according to a Poisson process with rate 1/3 (per minute). The coffee shop consists of two service stations, each one manned by a barista. The service time for a customer is exponentially distributed with an expected service time of 2 minutes. The coffee shop can accommodate at most two customers and if two customers are already in the coffee shop, an arriving customer will immediately give up and try somewhere else.
 - (a) Define a continuous time Markov chain X_t describing the number of customers in the store at time t, specify its transition rates (its infinitesimal generator), and compute its stationary distribution.
 - (b) In the long run what is the proportion of time the coffee shop is empty?
 - (c) In the long run what is the expected number of customers in the store?