Passing Standard: To pass the exam it is sufficient to solve five problems including a least one problem from each of the three parts. Show all your work and justify your answers carefully. All rings contain identity and all ring homomorphisms preserve the identity.

1. **Group theory**

1. Give an example of a 3-Sylow subgroup of the symmetric group S_9 and show that it is isomorphic to a semi-direct product of abelian groups.

2. Let G be a non-abelian group of order 28 containing an element of order 4. Describe G in terms of generators and relations.

3. Let G be a finite group and p a prime dividing $\#G$. Suppose H is a subgroup of G of index p.

 (a) What are the possibilities for the number of conjugate subgroups of H?

 (b) Suppose in addition that p is the smallest prime dividing $\#G$. Prove that H is normal in G.

2. **Ring theory**

4. Let R be a reduced (that is, R has no non-zero nilpotent elements) commutative nonzero ring that has a unique prime ideal. Show that R is a field.

5. Let

 $$R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{5}\}.$$

Determine, with proof, all ring homomorphisms $R \to \mathbb{C}$.

6. Let $R = \mathbb{C}[x, y]$ and $I = (x, y) \subseteq R$. Consider the R-module $I \otimes_R I$.

 (a) Show that there is a homomorphism of R-modules

 $$I \otimes_R I \to \mathbb{C}$$

 defined on pure tensors by

 $$a \otimes b \mapsto \frac{\partial a}{\partial x}(0, 0) \cdot \frac{\partial b}{\partial y}(0, 0).$$

 Here we define the R-module structure on \mathbb{C} by

 $$a \cdot \lambda = a(0, 0) \cdot \lambda$$

 for $a \in R$ and $\lambda \in \mathbb{C}$.

 (b) Show that $x \otimes y - y \otimes x$ is a non-zero torsion element of $I \otimes_R I$ with annihilator I.

3. Field theory

7. Let K be the splitting field of the polynomial $x^4 - 4$ over \mathbb{Q}. Determine the Galois group $\text{Gal}(K/\mathbb{Q})$.

8. Let K be a finite field and let L be an extension of K of degree n. Fix a monic irreducible polynomial $f \in K[x]$ of degree d dividing n. Show that there is $\alpha \in L$ which has minimal polynomial f over K.

9. Let $K \subseteq L \subseteq M$ be a tower of field extensions such that L/K and M/L are Galois. Does it follow that M/K is Galois? Give a proof or a counterexample and justify your answer.