• Do 7 of the following 9 problems. **Show your work!**
• Passing Standard:
 – Master’s level: 60% with three questions essentially complete (including at least one from each part)
 – Ph. D. level: 75% with two questions from each part essentially complete

Part I. Linear Algebra

1. Find two 2×2 matrices A, B with $A \neq \pm B$ such that
 $$A^2 = B^2 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}. $$
 Note: It is possible to solve this problem *without* doing excessive, brute force computation.

2. Let A be a real, square matrix. Suppose $A = -A^t$.
 (a) Show that if A is 3×3 then $\det(A) = 0$.
 (b) Show that if A is 4×4 and invertible then $\det(A)$ is positive.

3. Let V be the vector space of real polynomials of degree ≤ 2. Define an inner product on V by
 $$\langle p, q \rangle = \frac{1}{2} \int_{-1}^{1} p(x)q(x)dx.$$
 (a) Find an orthonormal basis for V consisting of polynomials of degree 0, 1 and 2, respectively.
 (b) Find the second degree polynomial that solves the minimization problem
 $$\min_{p \in V} \int_{-1}^{1} (p(x) - x^3)^2 dx.$$

4. Two $n \times n$ real matrices A, B are said to be *similar* if there is an invertible matrix M such that
 $$A = MBM^{-1}.$$
 Describe all equivalence classes of 2×2 matrices.
Part II. Advanced Calculus

1. Find the highest point of intersection of the sphere \(x^2 + y^2 + z^2 = 30 \) and the cone \(x^2 + 2y^2 - z^2 = 0 \).

2. Let \(D \subset \mathbb{R}^n \) be a closed unbounded subset, and let \(f : D \to \mathbb{R}^m \) be a continuous function. Suppose \(f(x) \to 0 \) as \(||x|| \to \infty \) (\(x \in D \)). Prove that \(f \) is uniformly continuous on \(D \).

3. Let \(S \) be a closed, oriented surface in \(\mathbb{R}^3 \) with unit normal vector \(\vec{n} \). Let \(\vec{c} \in \mathbb{R}^3 \) be a constant vector field. Show that the surface integral
 \[
 \int_S \vec{c} \cdot \vec{n} \, dS
 \]
 is identically zero.

4. Find domain of convergence of \(\sum_{n=1}^{\infty} \frac{(n + x)^n}{n^{n+x}} \).

5. Let \(f \) be a strictly increasing, continuous function on the closed interval \([a, b]\). Then there is a uniquely defined inverse function \(g \) defined on the interval \([f(a), f(b)]\), i.e. \(g(f(x)) = x \) for all \(x \in [a, b] \) (you do not have to prove this).
 Prove that \(g \) is continuous.