Work all problems. Show your work; explain your answers; state theorems used whenever possible.

1. A gene has two possible forms (alleles): A and a. Thus there are three possible genotypes: AA, aA, and aa. Number them 1, 2, and 3, respectively. Assume that their proportions in the population are \(p^2 \), \(2pq \), and \(q^2 \), respectively (\(q = 1 - p \)).

For a family with a father, a mother, and one child, let the random variables \(F, M, \) and \(C \) denote the genotypes of the father, mother, and child, respectively. For example, \(F \) is either 1, 2, or 3, according to the genotype of the father. Assume that \(F \) is independent of \(M \), i.e. that the population mates randomly, and that the conditional distribution of \(C \) given \((F, M)\) is determined by the familiar rules of genetics. (Children inherit one gene from each parent; each parent’s gene has probability 0.5 of being chosen; the mother’s contribution is independent of the father’s contribution.) Let \(p_{ik} = \Pr[C = k | M = i] \), the conditional probability that the child is of type \(k \) given that the mother (or father) is of type \(i \). Compute the nine probabilities \(p_{ik} \) in terms of \(p \) and \(q \).

2. Let \(\vec{Y} \) have a trivariate Gaussian distribution with mean vector \(\vec{\mu} \) and covariance matrix \(\Sigma \), where

\[
\vec{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix}, \quad \vec{\mu} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 1 & \rho & 0 \\ \rho & 1 & \rho \\ 0 & \rho & 1 \end{pmatrix}.
\]

(a) For which values of \(\rho \) are \(Y_1 + Y_2 + Y_3 \) and \(Y_1 - Y_2 - Y_3 \) statistically independent?

(b) What is the distribution of \(Y_1 + Y_2 + Y_3 \), including its name and associated parameters.

3. Suppose that \(X \) is a random variable with density \((3x + 1)/8\) on the interval \((0, 2)\). Let \(Y \) be the area of a circle of radius \(X \). Find the density of \(Y \).

4. (a) A continuous random variable \(Y \) takes values on the interval \((0, \infty)\). Show \(E[Y] = \int_0^\infty \Pr[Y \geq y] \, dy \). Hint: you may use the fact that \(y = \int_0^y \, dz \).

(b) A discrete random variable \(X \) takes values on the positive integers 1, 2, Show \(E[X] = \sum_{x=1}^{\infty} \Pr[X \geq x] \).

5. A family of densities is called a \textit{univariate natural exponential} family if, for some function \(A(\theta) \), the density of \(X \) given \(\theta \) can be expressed as

\[
p(x | \theta) = h(x) e^{\theta x - A(\theta)}.
\]

Suppose that \(X \) has such a density.

(a) Show that the moment generating function \(M_X(\theta)(t) = E[e^{tX}] \) is \(e^{\theta(A(t)+t) - A(\theta)} \).

(b) Show that \(E[X] = A'(\theta) \).