Do 5 out of the following 7 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

Problem 1: Let $f: \mathbb{RP}^2 \to \mathbb{RP}^5$ be the map
\[f([x_1, x_2, x_3]) = [x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3] \]
Prove that f is an embedding.

Problem 2: Let M be an n-dimensional smooth manifold and suppose X_1, X_2 are C^∞-vector fields such that:
- $X_1(p), X_2(p)$ are linearly independent for all $p \in M$.
- $[X_1, X_2] = 0$.
Prove that for every $p \in M$ there exists a coordinate chart $(U; x_1, \ldots, x_n)$ such that $p \in U$ and, in U,
\[X_i = \partial/\partial x_i ; \quad i = 1, 2. \]
Give an example to show that it may not be possible to take $U = M$.

Problem 3: Let $f: S^3 \to S^2$ be a smooth map. Let Ω_{S^2} denote the volume element of S^2 relative to the Euclidean metric.

a) Show that there exists a 1-form α in S^3 such that
\[d\alpha = f^*(\Omega_{S^2}). \]

b) Show that
\[I = \int_{S^3} \alpha \wedge d\alpha \]
is independent of the choice of α.

c) Show that if f is not surjective then $I = 0$.

Problem 4: Let $U(n) \subset GL_n(\mathbb{C})$ be the Lie group of all matrices satisfying $AA^* = I_n$, where the star denotes conjugate transpose.

a) Show that the diagonal subgroup of $U(n)$ is diffeomorphic to the compact torus T^n.

b) Explain why $\exp: M_n(\mathbb{R}) \to GL_n(\mathbb{R})$ extends to a map $\exp: M_n(\mathbb{C}) \to GL_n(\mathbb{C})$. (Here $M_n(F)$ is the set of all $n \times n$ matrices with entries from F. You need not provide full details, but your answer should address the main points.)

c) Describe the Lie algebra $u(n)$ of $U(n)$ as a subspace of $M_n(\mathbb{C})$ (you may assume $M_n(\mathbb{C})$ is a Lie algebra).
Problem 5: Let \(M \) be an orientable, \(n \)-dimensional Riemannian manifold and \(N \subset M \) an \((n-1)\)-dimensional submanifold. Suppose there exists an open set \(U \) in \(M \) such that \(N \subset U \) and a vector field \(X \in \mathcal{X}(U) \) with the property that \(X(p) \not\in T_p(N) \) for all \(p \in N \).

a) Prove that \(N \) is orientable.

b) Express the volume element of \(N \) in terms of the vector field \(X \) and the volume element of \(M \), where \(N \) is given the metric induced from \(M \).

c) Apply to the case of \(M = \mathbb{R}^{n+1} \) (given the Euclidean metric), \(N = S^n \) to obtain an explicit formula for the volume element of \(S^n \).

Problem 6: Let \(M \) be an open subset of \(\mathbb{R}^2 \) with the usual orientation and the Riemannian metric
\[
ds^2 = (f(x,y))^2(dx^2 + dy^2),
\]
where \(f(x,y) \) is a smooth function which does not vanish anywhere on \(M \). Give explicit coordinate expressions for the following:

a) The volume element of \((M, ds^2)\).

b) \(\text{grad}(F) \), where \(F \) is a smooth function on \(M \).

c) \(\text{div}(X) \), where \(X \) is a smooth vector field on \(M \).

d) The Gaussian curvature of \((M, ds^2)\).

Problem 7: Let \((M, g)\) be a Riemannian manifold. We view \(g \) as an order 2 covariant tensor on \(M \) and define for \(X \in \mathcal{X}(M) \) the Lie derivative:
\[
L_Xg(Y, Z) := Xg(Y, Z) - g([X, Y], Z) - g(Y, [X, Z])
\]
a) Verify that \(L_Xg \) is a covariant tensor of order 2 on \(M \).

b) Suppose \(X \) is a complete vector field on \(M \) and let \(\theta^X_t \), \(t \in \mathbb{R} \), denote the corresponding one-parameter group of diffeomorphisms of \(M \). Prove that \(\theta^X_t \) is an isometry for all \(t \in \mathbb{R} \) if and only if \(L_Xg = 0 \).