• Do 7 of the following 9 problems.
• **Passing Standard:**
 • For Master’s level: 60% with three questions essentially complete (including at least one from each part)
 • For Ph. D. level: 75% with two questions from each part essentially complete.
• Show your work!

Part I. Linear Algebra

1. Denote by $D = \frac{d}{dx}$ the differential operator on the set \mathcal{P} of all real, one-variable polynomials of degree ≤ 3 (including the zero polynomial). It is a fact that \mathcal{P} is a real vector space and that D is a linear transformation from \mathcal{P} to itself. Determine the characteristic polynomial and the minimal polynomial of this operator D.

2. Let A be a complex $n \times n$ matrix for which $A^3 = A$. Prove that rank$(A) = \text{trace}(A^2)$.

3. We say that a real, $n \times n$ symmetric matrix A is **positive definite** if $(A\vec{x}) \cdot \vec{x} > 0$ for all non-zero $\vec{x} \in \mathbb{R}^n$, where \cdot denotes the usual inner product on \mathbb{R}^n.

 (a) Show that A is positive definite if and only if all of its eigenvalues are positive.

 (b) If A is positive definite, show that there exists another positive definite matrix B such that $A = B^2$.

4. For a vector subspace W of \mathbb{R}^n, the orthogonal complement of W is defined by

 $$W^\perp := \{ \vec{x} \in \mathbb{R}^n : \vec{x} \cdot \vec{w} = 0 \text{ for all } \vec{w} \in W \},$$

 where \cdot denotes the usual inner product on \mathbb{R}^n. Show that $(W^\perp)^\perp = W$ for every subspace W of \mathbb{R}^n.

Part II. Advanced Calculus

1. Prove directly the following special case of the Arithmetic-Geometric Mean inequality: For any integer $n \geq 1$, if y_1, \ldots, y_n are positive real numbers with product 1, then $y_1 + \cdots + y_n \geq n$.

2. For each integer $n \geq 1$, let $f_n(x) = n^2 x^n (1 - x)$.
 (a) Show that this sequence of functions converges pointwise on $[0, 1]$.
 (b) Does this sequence of functions converges uniformly on $[0, 1]$?
 (c) Does $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) \, dx$?

3. Let $f(x)$ be a function which is continuously differentiable on the closed interval $[a, b]$. If $f(x)$ is not linear, show that there exists a number $c \in (a, b)$ at which
 $$|f'(c)| > \left| \frac{f(b) - f(a)}{b - a} \right|.$$
 (note: this is not the mean-value theorem!)

4. Calculate
 $$\int \int_S (\nabla \times \vec{F}) \cdot \vec{n} \, dS,$$
 where S is the surface
 $$S = \{(x, y, z) : x^2 + y^2 = 1, -1 \leq z \leq 0\} \cup \{(x, y, z) : x^2 + y^2 \leq 1, z = -1\},$$
 oriented by its outward-point normal vector \vec{n}, and
 $$\vec{F}(x + \vec{i} + y\vec{j} + z\vec{k}) = (y + e^{xz})\vec{i} - (x + e^{yz})\vec{j} + (e^{yz})\vec{k}.$$

5. Suppose $f(x)$ is Riemann-integrable on $[0, 1]$ with $0 < f(x) < 1$. Show that $\int_0^1 f(x) \, dx > 0$.