Do eight out of the following 10 questions. Each question is worth 10 points. To pass at the Master’s level it is sufficient to have 45 points, with 3 questions essentially correct; 55 points with 4 questions essentially correct are sufficient for passing at the Ph.D. level.

Note: All answers should be justified.

1. Prove that there does not exist a one-to-one conformal map from the punctured unit disc \(\{ z : 0 < |z| < 1 \} \) onto the annulus \(A = \{ z : 1 < |z| < 2 \} \).

2. Find a one-to-one conformal map from the region \(\{ z : 1 < |z| < 2, \text{ and } \Re(z) > 0 \} \) onto the rectangle \(\{ x + iy : 0 < x < \pi \text{ and } 0 < y < \ln(2) \} \).

3. State and prove the Swartz Lemma.

4. (a) Find the Laurent series expansion of the function \(f(z) = \frac{1}{z^2 - 4z + 3} \) valid near and centered at \(z_0 = 1 \). For what values of \(z \) does the series converges?
 (b) Find the radius of convergence \(R \) of the Taylor series about \(z = 1 \) of the function \(f(z) = \frac{1}{1 + z^2 + z^4 + z^6 + z^8 + z^{10}} \).

 Express the answer explicitly as a real number.

5. Let \(f(z) \) be an analytic function on the punctured complex plane \(\mathbb{C} \setminus \{ 0 \} \), satisfying
 \[
 |f(z)| \geq \frac{1}{|z|^d},
 \]
 for some real number \(d \). Show that \(d \) must be an integer and there exists a constant \(c \in \mathbb{C} \), such that \(f(z) = cz^{-d} \).

 Hint: Reduce to the case \(0 < d \leq 1 \) and analyze the singularities of \(f \).

6. Prove that every one-to-one holomorphic map \(f \) from the upper-half-plane \(\mathbb{H} := \{ x + iy : x, y \in \mathbb{R}, y > 0 \} \) onto itself is a fractional linear transformation with real coefficients and positive determinant. That is, \(f \) can be written in the form:
 \[
 f(z) = \frac{az + b}{cz + d},
 \]
 where \(a, b, c, d \in \mathbb{R} \), and \(ad - bc = 1 \).

7. (a) Prove that the series
 \[
 \sum_{n=-\infty}^{\infty} \frac{1}{(z - n)^2}
 \]
 defines a meromorphic function \(f(z) \), periodic with period 1, over the complex plane.
(b) Prove that the function \(g(z) := f(z) - \frac{\pi^2}{\sin^2(\pi z)} \) is an entire function.

8. Evaluate the following integrals

(a) \(\int_C \frac{\cos(z)dz}{z^2(z^5 - 1)} \), where \(C \) is the circle \(\{|z| = \frac{1}{2}\} \).

(b) \(\int_C \frac{z^4 \cos(1/z)}{z^5 + 1} dz \) where \(C \) is the circle \(\{|z| = 3\} \).

9. Evaluate the integral \(\int_0^\infty \frac{\cos(x)dx}{x^2 + 4} \). Justify all your steps!!!

10. Let \(f \) be a non-constant entire function and \(C := \{z : |z| = 1\} \) the unit circle. Suppose \(|f(z)| = 1 \), for all \(z \in C \). Prove that the winding number \(W(f(C), 0) := \frac{1}{2\pi i} \int_C \frac{f'(z)dz}{f(z)} \) is positive.