Provide solutions for Eight of the following Ten problems. Each problem is worth 10 points. To pass at the Master’s level, it is sufficient to have 45 points, with 3 essentially correct solutions; 55 points with 4 essentially correct solutions are sufficient for passing at the Ph.D. level. Indicate clearly which problems you want graded.

NOTATION: We denote by \(\mathbb{D} \) the open unit disc, i.e. \(\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \} \).

1. Use contour integration to verify that for \(b > 0 \),
\[
\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + b^2} \, dx = \frac{\pi e^{-b}}{b}.
\]
Be sure to justify all your steps.

2. Prove that for any \(a > 1 \), the equation \(z = e^{z-a} \) has exactly one solution in the unit disc \(\mathbb{D} \). (Give the full statement of any theorem you use).

3. Locate the poles of
\[
f(z) = \frac{\tan(z)}{z^5},
\]
and indicate the order of each pole. Find the principal part, i.e. the coefficients of the negative powers, in the Laurent expansion of \(f \) at each pole.

4. (a) State Morera’s theorem.
(b) Use Morera’s Theorem to prove that if \(f \) is continuous on \(\mathbb{C} \) and holomorphic on the set \(\Omega = \{ z \in \mathbb{C} \mid \text{Im}(z) \neq 0 \} \), then \(f \) is holomorphic on \(\mathbb{C} \).

5. (a) State the Schwarz Lemma, then prove it.
(b) Suppose \(f \) is a holomorphic mapping of the unit disc \(\mathbb{D} \) to itself and that \(f \) is not the identity map. Use the Schwarz lemma to prove that \(f \) has at most one fixed point in \(\mathbb{D} \).
6. For each part of this problem, indicate whether the statement is true or false. If true, give a proof; if false, provide a counterexample.
 (a) There exists a holomorphic function f on the unit disc \mathbb{D} such that $f(1/n) = f(-1/n) = 1/n^3$ for $n = 2, 3, \ldots$.
 (b) There exists a holomorphic function f on the punctured unit disc ($\mathbb{D} - \{0\}$) such that $g(z) = e^{f(z)}$ has a simple pole at the origin.
 (c) If f is a holomorphic function on the unit disc \mathbb{D} which does not vanish at any point of \mathbb{D}, then there exists a function g holomorphic on \mathbb{D} satisfying $g^2 = f$. (i.e. every non-vanishing holomorphic function on \mathbb{D} has a holomorphic square root on \mathbb{D}.)

7. Write down a conformal map that takes the “right-half” of the unit disc $R = \{z \in \mathbb{D} \mid \text{Re}(z) > 0\}$ onto the unit disc \mathbb{D}.

8. Use contour integration to prove that
 \[\int_0^{\infty} \frac{x^{1/3}}{1 + x^2} \, dx = \frac{\pi}{\sqrt{3}}. \]
 Be sure to justify all your steps.

9. Evaluate
 \[\frac{1}{2\pi i} \int_C \frac{\cos^n(z)}{z^3} \, dz \]
 where $n \geq 0$ is a non-negative integer, and C is the unit circle $|z| = 1$ traversed counterclockwise once.

10. (a) Give a careful statement of the Cauchy Inequalities, then prove them by using the Cauchy Integral Formulas.
 (b) State Liouville’s theorem. Use the Cauchy inequalities to prove Liouville’s theorem.