Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing standard: For Master’s level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

(1) Let $X = \mathbb{R}$, with the topology whose basic open sets are $(-\infty, a)$ for $a \in \mathbb{R}$. Let functions f_1 and f_2 from \mathbb{R} to $X \times X$ be defined by $f_1(x) = (x, x)$ and $f_2(x) = (x, -x)$. For $i = 1, 2$, find the topology on \mathbb{R} which makes f_i a homeomorphism with the subspace $f_i(\mathbb{R})$, thought of as a subspace of $X \times X$.

(2) Given $(a_1, a_2, \ldots) \in \mathbb{R}^\omega$, define a function $f : \mathbb{R} \to \mathbb{R}^\omega$ by

$$f(t) = (a_1 t, a_2 t, \ldots).$$

Give necessary and sufficient conditions for f to be continuous if \mathbb{R}^ω is given the box topology or the product topology.

(3) (a) Let $X = (0, 1)$. Prove that the one-point compactification \hat{X} of X is homeomorphic to the circle S^1.

(b) Find a topological space Y and a continuous function $X \to Y$ which does not extend to a continuous function $\hat{X} \to Y$.

(4) Let A and B be proper subsets of spaces X and Y, respectively. If X and Y are both connected, show that $(X \times Y) - (A \times B)$ is connected. (Hint: try looking at the case $X = Y = [0, 1]$, $A = B = (0, 1)$).

(5) Let (X, d) be a metric space, and let A be a nonempty subset of X. For each $x \in X$, define $d(x, A) = \inf\{d(x,a) \mid a \in A\}$.

(a) Show that $d(x, A) = 0$ if and only if $x \in \overline{A}$.

(b) Show that if A is compact, then $d(x, A) = d(x, a)$ for some $a \in A$.

(6) Let X be the quotient of $[0, \infty)$ obtained by identifying n with $1/n$ for all integers $n > 1$.

(a) Show that the quotient map $q : [0, \infty) \to X$ is not an open map.

(b) Show that X is not compact.

(7) Let X be the set of all functions $[0, 1] \to [0, 1]$, endowed with the sup-metric: $d(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)|$. Let

$$F = \{ f \in X \mid f([0, 1]) \text{ is finite} \},$$

and

$$C = \{ f \in X \mid f \text{ is continuous} \}.$$

Show that C is contained in the closure of F.