(1) Let X and Y be independent, non-negative, real-valued random variables. Their respective cumulative distribution functions are $F(x)$ and $G(x)$ and their respective probability densities (with respect to Lebesgue measure) are $f(x) > 0$ and $g(x) > 0$. Define $Z = \min(X, Y)$ and

$$I = 0, \text{ if } X \geq Y; I = 1, \text{ if } X < Y.$$

(a) Derive the joint distribution of (Z, I).

(b) Verify the following:

$$-(d/dx)P(Z \geq x, I = 1) = \frac{f(x)}{1 - F(x)}.$$

(2) Let $X_n, n = 1, 2, \cdots,$ and X be real-valued random variables defined on the same probability space.

(a) Give an example in which $X_n \Rightarrow X$ in distribution, but $X_n \not\rightarrow X$ in probability.

(b) Suppose $X_n \Rightarrow X$ in distribution and $X = c$, where c is a deterministic number. Show that $X_n \rightarrow c$ in probability.

(c) Give an example in which $X_n \Rightarrow X$ in distribution, but

$$\lim_{n \to \infty} E[X_n] \neq E[X].$$

(d) Let X_1, X_2, \ldots be i.i.d. with mean 1 and finite variance σ^2. Show that $(1/n) \sum_{i=1}^{n} X_iX_{i+1}$ converges in probability, and identify the limit.

(3) Let X and Y be bounded, real-valued random variables on a probability space (Ω, \mathcal{F}, P). Assume \mathcal{G} is a sub-sigma field of \mathcal{F}. Prove that

$$E[Y \mathbb{E}[X | \mathcal{G}]] = E[\mathbb{E}[Y | \mathcal{G}]]$$

using the definition of conditional expectation.

(4) Let X_1, \cdots, X_n be a random sample from an exponential distribution with unknown mean θ, i.e., $p(x) = \theta^{-1} \exp(-x/\theta)$, for $x > 0$ and $\theta > 0$.

(a) Find the MLE of the 75th percentile, say q, of the distribution.

(b) Determine whether or not this estimator is unbiased.
(c) Calculate the mean squared error (MSE) of the estimator in terms of n and θ. Does $MSE \to 0$ as $n \to \infty$?

(5) Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be two independent random samples from $N(\mu_1, \sigma^2_1)$ and $N(\mu_2, \sigma^2_2)$, respectively, where all parameters are unknown. Let \overline{X}_1 and \overline{X}_2 denote the sample means; S^2_1 and S^2_2 denote the sample variances of the two samples, respectively.

(a) Write down (without proof) the MLEs, $\hat{\mu}_1, \hat{\sigma}^2_1, \hat{\mu}_2, \hat{\sigma}^2_2$ for $\mu_1, \sigma^2_1, \mu_2, \sigma^2_2$, respectively.

(b) Derive the α-level likelihood ratio test for $H_0 : \sigma^2_1 = \sigma^2_2$ against $H_1 : \sigma^2_1 \neq \sigma^2_2$. The resulting test should be expressed in terms of a well-known statistic. (You need not derive the usual MLEs, but you do need to justify the likelihood ratio test.)

(6) Let X_1, \ldots, X_n be i.i.d. random variables from $\text{Binomial}(r, \theta)$, where $0 < \theta < 1$ and $r \geq 1$ is an integer.

(a) Justify that $T = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic for θ.

(b) Write $q = \Pr[X_1 \leq 1]$ in terms of θ, and define a random indicator U which is an unbiased estimator for q.

(c) Use the properties of T and the Rao-Blackwell Theorem to find the UMVU estimator of q.