Advanced Calculus/Linear algebra basic exam

Department of Mathematics and Statistics
University of Massachusetts Amherst
August 18, 2020

Instructions: Do 7 of the 8 problems. Show your work. The passing standards are:

- Master’s level: 60% with three questions essentially, complete (including one question from each part);
- Ph.D. level: 75% with two questions from each part essentially complete.

Calculus

1. Answer each of the following and explain your work.

 (a) \[\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{\sqrt{1 + \frac{2i}{n}}} \]

 (b) \[\lim_{h \to 0} \frac{1}{h} \int_{2}^{2+h} \frac{t}{\sqrt{1 + t^3}} dt. \]

 (c) \[\lim_{x \to 1} \frac{\log(x^3)}{x^2 - 1} \]

 (d) Evaluate \[\int_{0}^{\sqrt{5/2}} \frac{1}{\sqrt{25 - x^2}} dx. \]

2. Consider the function \(f(x, y) = xy - x^2 y^3 \). Find the maximimum and minimum values and where they are attained of \(f(x, y) \) when \((x, y)\) is in the square \(0 \leq x \leq 1, 0 \leq y \leq 1 \). (Hint: \(\sqrt{3} \approx 0.73 \))

3. In the \(xy \)-plane, the disk \(\{x^2 + y^2 \leq 2x\} \) is cut into two pieces by the line \(y = x \). Let \(D \) be the larger piece.

 (a) Sketch \(D \) including an accurate description of the center and radius of the given disk.

 (b) Describe \(D \) in polar coordinates.

 (c) Find the volume of the solid below the surface \(\{z = \sqrt{x^2 + y^2}\} \) and above \(D \) in \(\mathbb{R}^3 \).

4. Let \(C \) be the curve obtained by intersecting the cylinder \(\{x^2 + y^2 = 1\} \) and the surface \(\{z = y^2\} \) oriented in the counterclockwise direction viewed from the positive \(z \)-axis. Let \(\mathbf{F} = \langle x^2 - y, y^2 + x, 1 \rangle \). Calculate the integral \(\oint_C \mathbf{F} \cdot d\mathbf{r} \) by

 (a) direct evaluation and

 (b) another method.
Linear Algebra

1. Consider the following two vectors

\[v_1 = (1, 2, 2) \text{ and } v_2 = (-1, 0, 2). \]

(a) Give an orthonormal basis for the subspace \(V \subset \mathbb{R}^3 \) that they span.

(b) Find a unit vector orthogonal to \(V \).

2. View the complex numbers \(\mathbb{C} \) as a two-dimensional real vector space with basis \(\{1, i\} \).

(a) Given the complex number \(\alpha = a + ib \), express multiplication by \(\alpha \) as a real-valued matrix \(M_\alpha \).

(b) Does \(M_\alpha \) preserve angles between vectors?

Recall that for an \(n \times n \) matrix \(A \), then

\[p_A(t) = \det(tI - A) = t^n + c_1(A)t^{n-1} + \cdots + c_n(A). \]

is its \textit{characteristic polynomial}.

3. Let

\[A = \begin{pmatrix}
 2 & 0 & 1 & -3 \\
 0 & 2 & 10 & 4 \\
 0 & 0 & 2 & 0 \\
 0 & 0 & 0 & 3
\end{pmatrix}. \]

(a) Find the roots of its characteristic polynomial.

(b) Is this matrix diagonalizable? Find a maximal set of linearly independent eigenvectors of \(A \).

4. Let \(A \) be an arbitrary \(n \times n \) matrix.

(a) What is the constant term \(c_n(A) \) of its characteristic polynomial \(p_A(t) \)?

(b) The Cayley-Hamilton theorem says that such a square matrix \(A \) satisfies its own characteristic polynomial: \(p_A(A) = 0 \). Assuming the constant term of \(p_A \) is nonzero, express the inverse \(A^{-1} \) as a polynomial in \(A \). (The coefficients depend in a simple way on the coefficients \(\{c_k(A)\} \).

5. Given a matrix \(M \), let ker\((M) \) denote the kernel/nullspace of the matrix and let im\((M) \) denote the image/range.

(a) Let \(M \) be a \(15 \times 15 \) matrix. Can ker\((M) = \text{im}(M) \)?

(b) If the rank of \(M^2 \) equals the rank of \(M \), what do you know about \(\text{im}(M) \cap \ker(M) \)?