University of Massachusetts
Department of Mathematics and Statistics
Advanced Exam in Geometry
For August, 2016

Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. *Passing standard: 70% with three problems essentially complete.* Justify all your answers.

1. Let $E \rightarrow \mathbb{RP}^2$ be the tautological line bundle (i.e., $\forall x \in \mathbb{RP}^2$, the fiber E_x is the 1-dimensional subspace of \mathbb{R}^3 represented by x) and let $E' \rightarrow \mathbb{RP}^2$ be the rank 2 bundle whose fiber at $x \in \mathbb{RP}^2$ is the 2-dimensional subspace of \mathbb{R}^3 that is orthogonal to the line represented by x. Show that $E \oplus E' \rightarrow \mathbb{RP}^2$ is isomorphic to the product bundle $\mathbb{RP}^2 \times \mathbb{R}^3$ as smooth vector bundles.

2. Let $E \rightarrow S^1$ be the nontrivial rank 1 real vector bundle over the circle, e.g., $E = \mathbb{R} \times \mathbb{R}/\{(x,y) \sim (x+1,-y)\}$, and let M be the set defined by

$$M := \sqcup_{x \in S^1} P(E_x \oplus \mathbb{R}),$$

where $P(E_x \oplus \mathbb{R})$ is the space of 1-dimensional subspaces of the 2-dimensional vector space $E_x \oplus \mathbb{R}$.

(a) Show that M is a 2-dimensional smooth manifold.
(b) Determine whether M is orientable and explain why.

3. Let M be the smooth 3-manifold obtained by identifying $\{0\} \times S^2$ and $\{1\} \times S^2$ in $[0,1] \times S^2$ via the map $(0,x) \mapsto (1,-x)$ for any $x \in S^2 \subset \mathbb{R}^3$. Compute the de Rham cohomology groups of M.

4. Let (M,g) be a 2-dimensional Riemannian manifold, and let ∇ be the Levi-Civita connection. For any point $x \in M$, define

$$K(x) \equiv \frac{\langle R(X,Y)Y,X \rangle}{\sqrt{\vert X \vert^2 \vert Y \vert^2 - \langle X,Y \rangle^2}},$$

where $X,Y \in T_xM$ is a pair of linearly independent vectors. (Here $R(X,Y)Z \equiv \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$ is the curvature endomorphism.) Show that

(1) $K(x)$ depends only on x (i.e., independent of the choice of X,Y).
(2) If $K \equiv 0$ on M, then g is locally isometric to the Euclidean metric.
5. Let $\pi : T^*M \to M$ be the cotangent bundle of the smooth manifold M. We define a 1-form τ on T^*M as follows: for any $p \in M$, $v \in T^*_pM$, the value $\tau(p,v) \in T^*_p(T^*M)$ at (p,v) is given by $\pi^*(v)$, where $\pi^* : T^*_pM \to T^*_{(p,v)}(T^*M)$ is the dual of $\pi^* : T_{(p,v)}(T^*M) \to T_pM$. Show that τ is a smooth 1-form and $\omega = -d\tau$ is a symplectic structure on T^*M. (A symplectic structure by definition is a closed, non-degenerate 2-form.)

6. Let $G \subset GL(2, \mathbb{R})$ be the set of all 2×2 matrices A such that $A^tQA = Q$, where Q is the diagonal matrix with entries 1 and -1.

 (a) Show that G is a Lie group, and determine its Lie algebra and calculate its dimension.

 (b) How many components does G have?

 (c) Give an explicit parametrization of the identity component of G via the exponential map.

7. Let (S,g) be a parameterized Riemannian surface with local coordinates (u,v). We say (S,g) is diagonal if the metric is a diagonal matrix in these coordinates, that is $g_{12} = g_{21} = 0$ for all u,v.

 (a) Compute the Christoffel symbols Γ^k_{ij} in these coordinates.

 (b) Write down the geodesic equations in these coordinates.

 (c) Show that the isometrically embedded surface

 $$\{(u \cos v, u \sin v, u)/\sqrt{2} \mid u > 0, 0 \leq v < 2\pi\} \subset \mathbb{R}^3$$

 is diagonal, and that

 $$u = A \sec(v/\sqrt{2} + B)$$

 is a geodesic, where A, B are constants.

8. Let $X,Y \in \mathcal{X}(\mathbb{R}^3)$ be defined by

 $$X = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}, \quad Y = z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}.$$

 (a) Find the maximal subset U of \mathbb{R}^3 on which X,Y determine a 2-dimensional distribution Δ.

 (b) Show that Δ is integrable on U.

 (c) Describe the 2-dimensional integral manifold of Δ through the point $(1,1,1)$.