• Each problem is worth 10 points.
• Passing Standard: Do 8 of the following 10 problems and
 – Master’s level: 45 points with 3 questions essentially complete
 – Ph. D. level: 55 points with 4 questions essentially complete
• Justify your reasoning!

1. (a) Write down Cauchy–Riemann equations in polar coordinates.
(b) Use part (a) to show that the main branch of \(\text{Log} \) is a holomorphic function. Here we define \(\text{Log}(re^{i\theta}) := \ln(r) + i\theta \) for \(r > 0, -\pi < \theta < \pi \).

2. Prove the Schwarz reflection principle. Namely, let \(\Omega \subset \mathbb{C} \) be an open set symmetric under complex conjugation. Let

\[
\Omega^+ = \Omega \cap \{ z \mid \text{Im}(z) > 0 \}, \quad \Omega^- = \Omega \cap \{ z \mid \text{Im}(z) < 0 \}, \quad I = \Omega \cap \mathbb{R}.
\]

Suppose \(f(z) \) is a holomorphic function in \(\Omega^+ \) which extends continuously to \(\Omega^+ \cup I \). Then \(f(z) \) can be extended to a holomorphic function in \(\Omega \).

3. Find a holomorphic bijection between the region

\[
\{ z : |z| < 2, \text{Im}(z) > 1 \}
\]

and the region

\[
\{ z : |z| < 2, \text{Im}(z) < 1 \}.
\]

4. (a) Determine the number of zeroes of

\[
z^5 - z^4 + 2z^3 - 3z^2 - 5
\]

in the disk \(\{ z : |z| < 3 \} \).
(b) Evaluate the integral \(\int_C \frac{z^4 - 2z^2 + z - 3}{z^5 - z^4 + 2z^3 - 3z^2 - 5} \, dz \), where \(C \) is the positively-oriented boundary of the disc from part (a).

5. Evaluate the integral

\[
\int_0^\infty \frac{x^{1/3}}{x^2 + 9x + 8} \, dx
\]

Justify all your steps.

6. Let \(z_0 \) be an isolated singularity of an analytic function \(f \). Prove that if \(\text{Re}(f) \) is bounded from above, then \(z_0 \) is a removable singularity.

7. For each of the following functions, find all isolated singular points, classify them (into removable singularities, poles, essential singularities), and find residues at all isolated singular points:

(a) \(z^2 e^{\frac{z}{z^4 + 1}} \); (b) \(\cot^2(z) \); (c) \(\frac{z^{35}}{1 - z^{16}} \).
8. Find all Laurent series of \(f(z) = \frac{2z}{z^2 - 4z + 3} \) centered at the origin and specify for each the largest region over which it represents the function.

9. Prove the open mapping theorem: a holomorphic non-constant function \(f : \Omega \to \mathbb{C} \) is open, i.e. \(f(U) \) is open for any open set \(U \subset \Omega \). Here \(\Omega \subset \mathbb{C} \) is a connected open set.

10. Let \(F(z, w) = w^n + c_1(z)w^{n-1} + \cdots + c_n(z)w \), where \(c_1(z), \ldots, c_n(z) \) are entire functions. Assume that the polynomial \(F(0, w) \) has a unique and simple zero \(w_0 \) in the open unit disk \(D := \{ w : |w| < 1 \} \) and \(F(0, w) \) does not vanish on the boundary \(\{ w : |w| = 1 \} \).

(a) Prove that the integral
\[
\frac{1}{2\pi i} \int_{|w|=1} \frac{\partial F(z, w)}{\partial w} F(z, w) \, dw
\]
is constantly equal to 1, for \(z \) in some non-empty connected open neighborhood \(U \) of 0 in the complex plane.

(b) Prove that the integral
\[
\frac{1}{2\pi i} \int_{|w|=1} w \frac{\partial F(z, w)}{\partial w} F(z, w) \, dw
\]
is a well defined holomorphic function \(\varphi(z) \) of \(z \) in some non-empty connected open neighborhood \(U \) of 0 in the complex plane. Moreover, \(\varphi(0) = w_0 \) and \(F(z, \varphi(z)) = 0 \), for all \(z \in U \).