NAME:

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts

Monday, August 25, 2014

Instructions

- 1. This exam consists of eight (8) problems all counted equally for a total of 100%.
- 2. You are encouraged to try to solve every problem; there is no penalty for incorrect answers.
- 3. In order to pass this exam, it is enough that you solve essentially correctly at least five (5) problems and that you have an overall score of at least 65%.
- 4. State explicitly all results that you use in your proofs and verify that these results apply.
- 5. Please write your work and answers <u>clearly</u> in the blank space under each question and on the blank page after each question.

Conventions

- 1. For a set A, 1_A denotes the indicator function or characteristic function of A.
- 2. If a measure is not specified, use Lebesgue measure on \mathbb{R} . This measure is denoted by m.
- 3. If a σ -algebra on \mathbb{R} is not specified, use the Borel σ -algebra.

1. (a) Let X be a set of points, \mathcal{M} a σ -algebra of subsets of X, and μ a mapping from \mathcal{M} into $[0, \infty)$ satisfying $\mu(X) < \infty$. Prove that the following two properties are equivalent.

(a) μ is a countably additive measure on \mathcal{M} .

(b) μ is a finitely additive measure on \mathcal{M} that is continuous at \emptyset ; i.e., if $\{A_n, n \in \mathbb{N}\}$ is a sequence of sets in \mathcal{M} satisfying $A_{n+1} \subset A_n$ for all $n \in \mathbb{N}$ and $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, then $\lim_{n \to \infty} \mu(A_n) = 0$.

2. For $x \in (0, \infty)$ consider the integral

$$F(x) = \int_{(0,\infty)} \frac{1 - \exp(-xt^2)}{t^2} dt.$$

(a) Prove that $F(x) < \infty$ for all $x \in (0, \infty)$.

(b) By calculating the derivative F'(x) and using the fact that $\int_{-\infty}^{\infty} e^{-s^2} ds = \sqrt{\pi}$, compute F(x) as an explicit function of x.

Justify all your steps carefully.

- Denote by B(ℝ) the σ-algebra of all Borel subsets of ℝ. Let t be any real number and A any set in B(ℝ).
 - (a) Define

$$A + t = \{ x \in \mathbb{R} : x = a + t \text{ for some } a \in A \}.$$

Prove that $A + t \in \mathcal{B}(\mathbb{R})$.

(b) Let μ be a finite Borel measure on \mathbb{R} that is absolutely continuous with respect to Lebesgue measure m. Prove that the function mapping $t \in (0, \infty)$ to $\mu(A + t)$ is continuous. (**Hint.** Prove this first for A an interval.)

4. (a) Let $\{f_n, n \in \mathbb{N}\}$ be a sequence of real-valued, measurable functions on [0, 1]. Assume that for each $n \in \mathbb{N}$

$$\int_0^1 f_n^2 \, dm \le \frac{1}{n^3}.$$

Prove that as $n \to \infty$, $f_n \to 0$ a.e. on [0, 1].

(b) Let $\{g_n, n \in \mathbb{N}\}$ be a sequence of real-valued measurable functions on [0, 1]. Assume that for each $n \in \mathbb{N}$

$$\int_0^1 g_n^2 \, dm \to 0 \text{ as } n \to \infty.$$

By giving a counterexample, prove that it does NOT follow that as $n \to \infty$, $g_n \to 0$ a.e. on [0, 1].

5. Let (X, \mathcal{M}, μ) be a measure space, and fix finite real numbers p and q satisfying $p^{-1} + q^{-1} = 1$. Let $\{f_n, n \in \mathbb{N}\}$ be a sequence of functions in $L^p(X)$ converging in $L^p(X)$ to f, and let $\{g_n, n \in \mathbb{N}\}$ be a sequence of functions in $L^q(X)$ converging in $L^q(X)$ to g. Prove that the sequence $\{f_ng_n, n \in \mathbb{N}\}$ converges in $L^1(X)$ to fg.

6. Let H be a Hilbert space H with norm || · || and inner product ⟨·, ·⟩. Assume that A and B are closed linear subspaces of H satisfying A ⊥ B; i.e., for all x ∈ A and all y ∈ B, ⟨x, y⟩ = 0. Define A + B to be the set of elements z ∈ H having the representation z = x + y for some x ∈ A and some y ∈ B.

(a) Prove that $A \cap B = \{0\}$ and that if $z \in \mathcal{H}$ has the representation z = x + y for some $x \in A$ and some $y \in B$, then this representation is unique.

(b) By using sequences, prove that A + B is closed in \mathcal{H} .

- 7. By definition, a normed vector space X is separable if it contains a countable subset that is dense with respect to the norm on X. For 1 ≤ p ≤ ∞, let l^p denote the normed vector space of real sequences {x_n, n ∈ N} that equals L^p(N) for counting measure on N. Prove or disprove the following two statements.
 - (a) ℓ^1 is separable.
 - (b) ℓ^{∞} is separable.

8. Let f be a function mapping a finite closed interval [a, b] into \mathbb{R} .

(a) Define the concept that f is absolutely continuous on [a, b].

(b) Define the concept that f is of bounded variation on [a, b].

(c) Using the definitions in parts (a) and (b), prove that if f is absolutely continuous on [a, b], then f is of bounded variation on [a, b].

(d) Let $T_f[a, b]$ denote the total variation of f on [a, b]. Prove that if f is absolutely continuous on [a, b], then

$$T_f[a,b] \le \int_a^b |f'(x)| dx < \infty.$$