Complex analysis qualifying exam

Department of Mathematics and Statistics
University of Massachusetts, Amherst

August 29, 2013

Do 8 out of the following 10 questions.
Each question is worth 10 points. To pass at the Master’s level it is sufficient to have 45 points with 3 questions essentially correct. To pass at the PhD level it is sufficient to have 55 points with 4 questions essentially correct.

Note: All answers should be justified carefully.

(1) (10 points) Let \(f : \mathbb{C} \to \mathbb{C} \) be a holomorphic function such that \(\frac{f(z)}{z} \to 0 \) as \(|z| \to \infty \). Prove that \(f \) is constant.

(2) (a) (2 points) State Rouché’s theorem.
(b) (8 points) Consider the function
\[
 f : \mathbb{C} \to \mathbb{C}, \quad f(z) = z^5 + e^z + 4.
\]
Let
\[
 \Omega = \{ z = x + iy \in \mathbb{C} \mid x < 0 \} \subset \mathbb{C},
\]
the left half plane. Show that \(f \) has exactly 3 zeroes in \(\Omega \) (counting multiplicities).

(3) (a) (5 points) Let
\[
 \Omega_1 = \{ z = x + iy \in \mathbb{C} \mid 0 < y < 1 \},
\]
a horizontal strip, and
\[
 \Omega_2 = \{ z = x + iy \in \mathbb{C} \mid x > 0 \text{ and } y > 0 \},
\]
the positive quadrant. Find a holomorphic bijection \(f : \Omega_1 \to \Omega_2 \).
(b) (5 points) Let \(\Omega_3 = \{ z \in \mathbb{C} \mid |z - 1| < 1 \text{ and } |z - i| < 1 \} \)
(a “lune”). Find a holomorphic bijection \(g : \Omega_3 \to \Omega_2 \).

(4) (a) (2 points) Let \(\Omega \subset \mathbb{C} \) be an open set, \(a \in \Omega \) a point, and
\[
f : \Omega \setminus \{a\} \to \mathbb{C}
\]
a holomorphic function. Define the residue of \(f \) at \(a \).
(b) Let \(\gamma \) denote the circle with center the origin and radius 3, traversed once counterclockwise. Compute the following contour integrals.

i. (4 points)
\[
\int_{\gamma} \frac{z^2}{(z - 2)(z + 1)^2} dz.
\]

ii. (4 points)
\[
\int_{\gamma} \frac{e^z}{\sin z} dz.
\]

(5) (10 points) Compute the improper integral
\[
\int_{-\infty}^{\infty} \frac{1}{x^6 + 1} dx.
\]

(6) Let \(f \) be a one-to-one holomorphic map from a region \(\Omega_1 \) onto a region \(\Omega_2 \). Assume that the closure of the disc \(D := \{ z : |z - z_0| < \epsilon \} \) is contained in \(\Omega_1 \). Prove that the inverse function \(f^{-1} : f(D) \to D \) is given by the integral formula
\[
f^{-1}(\omega) = \frac{1}{2\pi i} \int_{|z - z_0| = \epsilon} \frac{f'(z)}{f(z) - \omega} \cdot z dz.
\]

(7) Let \(\Omega \) be a connected open subset of the complex plane and \(f_n(z), n \geq 1 \), a sequence of holomorphic and nowhere vanishing functions on \(\Omega \). Assume that the sequence \(f_n(z) \) converges to a function \(f(z) \), uniformly on every compact subset of \(\Omega \). Prove that \(f \) is either identically zero, or never equal to zero in \(\Omega \).
(8) Let \(f(z) = a_0 + a_1z + \cdots + a_nz^n \) be a polynomial of degree \(n > 0 \). Prove that
\[
\frac{1}{2\pi i} \int_C z^{n-1} |f(z)|^2 \, dz = a_0 \bar{a}_n R^{2n},
\]
where \(C \) is the circle \(|z| = R\) traversed once counterclockwise.

(9) Let \(C \) be the circle \(|z| = 2\) traversed counter-clockwise. Compute
\[
\int_C \frac{z^{2n} \cos(1/z)}{1 - z^n} \, dz \quad \text{for all integers } n \geq 2.
\]

(10) Prove or disprove the following statements.

(a) Let \(U \) be a simply connected open subset of the complex plane. For any two points \(p, q \) in \(U \) there exists a one-to-one holomorphic map from \(U \) onto itself such that \(f(p) = q \).

(b) For any open subset \(W \) of the complex plane, any harmonic function on \(W \) is the real part of a holomorphic function on \(W \).

(c) If \(f \) and \(g \) are meromorphic on the complex plane, then so is the composition \(f \circ g \).