Do 5 out of the following 8 problems. Indicate clearly which questions you want graded. Passing standard: 70% with three problems essentially complete. Justify all your answers.

1. Prove or disprove the following statements:
 (a) The tangent bundle \(T(RP^2 \times S^1) \) is trivial.
 (b) The connected sum of \(RP^3 \) with itself is orientable.

2. Consider the smooth map \(f : \mathbb{R}^3 \to \mathbb{R}^4 \) given by \(f(x, y, z) = (x^2 - y^2, xy, xz, yz) \).
 Let \(M \) be the image of the restriction of \(f \) on the unit sphere \(x^2 + y^2 + z^2 = 1 \).
 Show that \(M \) is an embedded submanifold of \(\mathbb{R}^4 \).

3. Use the Mayer-Vietoris sequence and induction to compute the de Rham cohomology groups of the complex projective spaces \(CP^n \).

4. Let \(D \) be the 2-dimensional smooth distribution on \(\mathbb{R}^3 \) spanned by vector fields
 \[X = \frac{\partial}{\partial x} - x \frac{\partial}{\partial z}, \quad Y = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y} - (x^2 + y) \frac{\partial}{\partial z}. \]
 (a) Show that \(D \) is involutive.
 (b) Describe the integral submanifolds of \(D \) in \(\mathbb{R}^3 \).

5. Consider the set \(E \) over the real projective space \(RP^n \) given by
 \[E := \bigsqcup_{x \in RP^n} E_x \]
 where for each point \(x = [x_0 : x_1 : \cdots : x_n] \in RP^n \), \(E_x \) is the unique line through the point \((x_0, x_1, \cdots, x_n)\) and the origin in \(\mathbb{R}^{n+1} \).
 (a) Show that \(E \) is naturally a smooth vector bundle over \(RP^n \).
 (b) Show that \(E \) is not isomorphic to the product bundle (i.e. the trivial bundle) over \(RP^n \) for any \(n \geq 1 \).

6. Let \(n > 0 \). Suppose \(f : M \to S^n \) is an immersion from a compact closed, connected \(n \)-manifold \(M \) to the \(n \)-sphere \(S^n \). Prove that \(f \) is a diffeomorphism.
7. Consider the noncompact surface \(S = \{(x, y, z) : z = x^2 + y^2\} \subset \mathbb{R}^3 \).

(a) Find the supremum for the Gauss curvature and the subset of \(S \) on which it is attained.

(b) Does the Gauss curvature attain its infimum on \(S \)? (Explain why or why not!)

8. Prove that the set of upper triangular real \(3 \times 3 \) matrices with determinant 1 is a Lie group. Furthermore,

(a) How many connected components does this group have?

(b) Determine its Lie algebra and compute its dimension.