Do 7 of the following 9 problems.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Denote by X the set of six vectors $(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)$.

Find two different, non-empty subsets Y_1, Y_2 of X such that

- the elements of each Y_i are linearly independent, and
- the elements of $Y_i \cup \{\vec{x}\}$ are not linearly independent for any $\vec{x} \in X \setminus Y_i$.

Justify your answer!

2. Let $\vec{w} \in \mathbb{R}^n$ be a unit vector. Define a linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ as follows:

$$T\vec{x} := \vec{x} - 2(\vec{x} \cdot \vec{w})\vec{w}$$

(Where $\vec{x} \cdot \vec{w}$ is the usual inner product in \mathbb{R}^n).

(a) Show that T is an orthogonal transformation, in other words $||T\vec{x}|| = ||\vec{x}||$ for all \vec{x}.

Hint: What is the geometric interpretation of T? You might want to draw a picture.

(b) Find the Jordan form of A.

3(a) Let A, B be $n \times n$ matrices. If $AB = 0$, show that

$$\text{rank}(A) + \text{rank}(B) \leq n.$$

(b) For any $n \times n$ matrix A, show that there exists a $n \times n$ real matrix B with

$$AB = 0 \quad \text{and} \quad \text{rank}(A) + \text{rank}(B) = n.$$

4. Suppose A is a real $n \times n$ matrix with all entries ≥ 0 and with the sum of entries in each column equal to 1.

(a) Show that A has an eigenvector with eigenvalue equal to 1.

(b) Show that all eigenvalues λ of A satisfy $|\lambda| \leq 1$

Hint: One way to do this is prove the corresponding statement for A'; of course there are other ways.
Part II. Advanced Calculus

1. The *Fundamental Theorem of Arithmetic* says that every integer \(n > 1 \) can be written uniquely as

\[
n = p_1^{e_1} \cdots p_r^{e_r},
\]

where \(p_1 < \cdots < p_r \) are primes and the \(e_i \) are positive integers. Use the Fundamental Theorem to show that if \(\{n_i\}_{i \in \mathbb{N}} \) is an infinite, strictly increasing sequence of positive integers such that the series \(\sum_{i=1}^{\infty} 1/n_i \) diverges, then the set

\[
\{ p \text{ prime : } p \text{ divides } n_i \text{ for some } i \}
\]

is infinite.

2. Fix numbers \(R > r > 0 \). Compute the volume of the solid obtained by rotating the circle \((x - R)^2 + y^2 = r^2\) above the \(y \)-axis. Show your work.

3. Let \(f_1(x, y), f_2(x, y) \) be smooth functions on \(\mathbb{R}^2 \). Denote by \(X_i \) the surface in \(\mathbb{R}^3 \) defined by \(z = f_i(x, y) \). Suppose \(X_1 \cap X_2 = \emptyset \). As \(p_i \) runs through all points on \(X_i \), show that the line segment \(\overline{p_1p_2} \) is perpendicular to both \(X_i \) whenever the length of the line segment reaches a local minimum or local maximum.

4. Let \(f : [0, 1] \to \mathbb{R} \) be a Riemann integrable function. It is a fact that for any integer \(n > 0 \), the function \(g_n(x) := f(x^n) \) is also Riemann integrable on \([0, 1] \).

(a) If \(f \) is continuous at \(x = 0 \), show that

\[
\lim_{n \to \infty} \int_0^1 g_n(t)dt = f(0).
\]

(b) Give an example to show that (1) is false if \(f \) is not continuous at \(x = 0 \).

5. Let \(f(x, y) = xy + \int_0^y \sin(t^2)dt \).

(a) Compute \(\nabla f(a, b) \).

(b) Show that \((0, 0) \) is a saddle point of \(f(x, y) \).