Department of Mathematics and Statistics

University of Massachusetts Basic Exam: Topology September 4, 2009

Answer five of the seven questions. Indicate clearly which five questions you want graded. Justify your answers.

Passing standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

In the following, C(X,Y) denotes the set of continuous functions from topological spaces X to Y, and \mathbb{R} denotes the real line with the standard topology.

- (1) Let \mathcal{T} be the family of subsets of \mathbb{R}^2 consisting of the empty set and the complements of finite unions of points and lines. Show that \mathcal{T} is a topology. Is (X, \mathcal{T}) Hausdorff?
- (2) Let X and Y be two locally compact Hausdorff topological spaces.
 - (a) Define the one-point compactification of X.
 - (b) Recall that a function is *proper* if the inverse image of any compact set is compact. Prove that a function $f \colon X \to Y$ is proper if and only if it extends to a continuous map between the one-point compactifications of X and Y.
- (3) Let $\{X_i \mid i \in I\}$ be a collection of topological spaces, and for each $i \in I$ let $A_i \subset X_i$. Show that $\prod A_i$ is dense in $\prod X_i$ if and only if each A_i is dense in X_i .
- (4) Let X be a set, and let $f_n: X \to \mathbb{R}$ be a sequence of functions. Let $\bar{\rho}$ be the uniform metric on the space \mathbb{R}^X . Prove that $\{f_n\}$ converges uniformly to a function $f: X \to \mathbb{R}$ if and only if $\{f_n\}$ converges in $(\mathbb{R}^X, \bar{\rho})$.
- (5) Let (X, d) be a metric space and $f: X \to X$ a function such that d(x, y) > d(f(x), f(y)) for all $x \neq y$ in X.
 - (a) Give an example to show that if X is not compact, then f need not have any fixed points.
 - (b) If X is compact, show that f has a fixed point x_0 .
 - (c) Show that if f has a fixed point, it is unique.
- (6) Let $f: X \to Y$ be a continuous bijection.
 - (a) Show that if X is compact and Y is Hausdorff, then f is a homeomorphism.
 - (b) Give an example where Y is Hausdorff and f is not a homeomorphism.
 - (c) Give an example where X is compact and f is not a homeomorphism.
- (7) If $A \subseteq X$, a retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for each $a \in A$. Show that a retraction is a quotient map.