Do 5 of the following questions. Each question carries the same weight. Passing level is 60% and at least two questions substantially correct.

1. Consider the linear ODE
\[2x \frac{dy}{dx} + y = f(x), \quad \text{for } x \geq 0, \]
in which \(f \) is a smooth and strictly negative function. Show that it is not possible for any solution \(y(x) \) to have a finite and positive initial value \(y(0) \). How do the positive solutions behave as \(x \) approaches 0?

2. A nonlinear oscillator with displacement \(x \in \mathbb{R}^1 \) is governed by the DE:
\[\frac{d^2x}{dt^2} + \frac{dV}{dx} = 0, \]
with potential \(V = \frac{1}{2}x^2 - \frac{1}{3}x^3 \).

 (a) Reformulate this dynamical equation as a two-dimensional system of first-order equations. Determine the equilibrium points of the system.

 (b) Analyze the stability of each equilibrium point and sketch the entire phase portrait.

 (c) Find a function \(H = H(x, \dot{x}) \) on the phase plane that is constant on each solution trajectory.
3. Consider the competing species model governing the evolution of two ecological species quantified by x_1 and x_2 (with $x_1, x_2 \geq 0$):

\[
\begin{align*}
\frac{dx_1}{dt} &= r_1 \left(1 - \frac{x_1}{k_1}\right)x_1 - c_1 x_1 x_2, \\
\frac{dx_2}{dt} &= r_2 \left(1 - \frac{x_2}{k_2}\right)x_2 - c_2 x_1 x_2.
\end{align*}
\]

(a) Interpret the positive constants r_i, k_i, and c_i ($i = 1, 2$), and describe the meaning of the model’s terms that are scaled by these constants.

(b) In the case of “weak competition” when $c_1 < r_1/k_2$ and $c_2 < r_2/k_1$, determine the qualitative behavior of solutions as $t \to +\infty$? What does this behavior mean in ecological terms? Do find the nullclines and equilibrium point(s) and sketch them, but do not carry out a full stability analysis of the equilibrium point(s) [because the algebra is too messy.]

4. (a) Provide a complete derivation of the Laplace operator in polar coordinates in \mathbb{R}^2. That is, show that the operator $u \mapsto \triangle u = \partial^2 u / \partial x^2 + \partial^2 u / \partial y^2$ converts to

\[
\triangle u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.
\]

(b) Solve the following boundary value problem:

\[
\begin{align*}
\triangle u &= 0 \quad \text{in} \quad 0 \leq r < a, \ 0 \leq \theta < 2\pi, \\
u &= \sin^2 \theta \quad \text{on} \quad r = a.
\end{align*}
\]

5. The probability density function (PDF) $u(x, t)$ for an elastically bound particle evolves according to the equation

\[
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \gamma \frac{\partial (xu)}{\partial x},
\]

for $-\infty < x < \infty$ and $t > 0$, where D and γ are positive constants. Verify that for all $t > 0$, the solution $u(x, t)$ is a PDF provided the data $u(x, 0)$ is. A function $v(x)$ is a PDF if and only if it satisfies both conditions

\[
v(x) \geq 0 \quad \text{and} \quad \int_{-\infty}^{+\infty} v(x) \, dx = 1.
\]
6. The “shallow water equations” approximate the motion of a thin layer of incompressible and inviscid fluid in the presence of gravity. In one space dimension they are the following pair of nonlinear PDEs:

\[
\begin{align*}
\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} &= -h \frac{\partial u}{\partial x}, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= -g \frac{\partial h}{\partial x}.
\end{align*}
\]

for a pair of unknowns, \(h = h(x,t), \ u = u(x,t) \) that represent the water surface height and the fluid velocity (in the \(x \) direction). The constant \(g \) is the gravitational acceleration.

(a) Consider motions that are small perturbations around the uniform, undisturbed state \(h = H, u = 0 \), where \(H \) is a constant water height. In terms of the perturbation variables \(\eta = h - H \) and \(u \), derive the linearized equations of motion (in which terms of higher order than the first in the perturbations are neglected).

(b) Show that this pair of linear first-order PDEs in the variables \(\eta = h - H \) and \(u \) are equivalent to a single, second-order PDE in \(\eta \); namely, the wave equation

\[
\frac{\partial^2 \eta}{\partial t^2} - c^2 \frac{\partial^2 \eta}{\partial x^2} = 0.
\]

Give a formula for the wave speed \(c \) in terms of \(g \) and \(H \).

7. The viscous Burgers’ equation for \(u(x,t) \),

\[
u_t + \left(\frac{1}{2} u^2 \right)_x = \epsilon \ u_{xx}, \quad (x \in \mathbb{R}^1, \ t > 0)
\]

is a fundamental equation for nonlinear viscous flows.

(a) Make the substitution

\[
w(x,t) = \int_{-\infty}^{x} u(\xi, t) \ d\xi,
\]

and derive the PDE satisfied by \(w(x,t) \).

(b) Now make the substitution

\[
w(x,t) = \alpha \log \phi(x,t), \quad \text{where } \alpha \text{ is a positive constant},
\]

and derive an equivalent PDE for \(\phi \).

(c) Conclude that for an appropriate choice of constant \(\alpha \), solutions \(u \) of Burgers’ equation are in 1-1 correspondence with solutions \(\phi \) of the heat equation. This is known as the “Cole-Hopf transformation.”