Do 7 of the following 9 problems.

Passing Standard: For Master’s level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Let A, B be real, $n \times n$ matrices such that $A^2 = A$ and $B^2 = B$. Suppose A and B have the same rank. Show that A and B are similar.

2. Denote by $M_{2 \times 2}$ the real vector space of all 2×2 real matrices. Let

 $$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

 and denote by $\phi : M_{2 \times 2} \rightarrow M_{2 \times 2}$ the linear transformation defined by $\phi(M) = AM - MA$.

 (a) Is ϕ diagonalizable?
 (b) Is ϕ invertible?

 Justify your answer!

3. Let A be a real, $n \times n$ orthogonal matrix (i.e. $A^tA = I_n$, the $n \times n$ identity) and with $\det A = 1$.

 (a) Show that every eigenvalue of A has absolute value 1.
 (b) If n is odd, show that 1 is an eigenvalue of A.

4. Let V, W be finite dimensional real vector spaces, and let $T : V \rightarrow W$ be a linear transformation. Determine

 $$\dim(\ker T) + \dim(\text{image}T).$$

 Justify your answer!
Part II. Advanced Calculus

1. Let f_1, f_2, \ldots be continuous functions on $[0, 1]$ satisfying $f_1(x) \geq f_2(x) \geq \cdots$ and $\lim_{n \to \infty} f_n(x) = 1$ for all x. Prove or give a counterexample: the sequence of functions $\{f_n\}_n$ uniformly converges to the constant function 1 on $[0, 1]$.

2. Let $g : [1, \infty) \to \mathbb{R}$ be a function which is uniformly continuous. If $g(x) \geq 0$ for all x and if $\int_1^\infty g(t) dt$ exists and is finite, show that $\lim_{x \to \infty} g(x) = 0$.

3. Evaluate
$$\alpha := \int_0^{1/2} \frac{\sin(t)}{t} dt$$
to two decimal places, i.e. find a real number β such that $|\alpha - \beta| < 0.005$. Show your work!

4. Determine all values (a, b) for which the function
$$f_{a,b}(x, y) := ay^2 + bx$$
has exactly four critical points along the ellipse $3x^2 + 2y^2 = 1$.

5. Denote by \vec{F} the following vector field in \mathbb{R}^3
$$(x^2 + y - 4)\vec{i} + (3xy)\vec{j} + (2xz + z^2)\vec{k}.$$ (a) Compute $\nabla \times \vec{F}$ (in other words, curl\vec{F}).
(b) Compute the integral of $\nabla \times \vec{F}$ along the surface $x^2 + y^2 + z^2 = 25$ with $z \geq 3$, oriented so that the normal vectors point towards the origin.

6. Denote a sequence $\{a_n\}$ recursively as follow:
$$a_1 = 3, \quad a_{n+1} = \sqrt{3 + a_n} \quad (n \geq 1)$$
Show that this sequences converges to a finite number and determine this number. Show your work!