Passing Standard: It is sufficient to do five problems correctly, including at least one from each of the four parts.

I: Group theory
1. Let G be a finite group. Assume that there is $g \in G$ with conjugacy class consisting of exactly two elements. Show that G contains a non-trivial proper normal subgroup N.
2. Prove that (up to isomorphism) there is a unique non-abelian group of order $2007 = 3^2 \cdot 223$ containing an element of order 9.

II: Ring theory
3. Let R denote the field of real numbers. Let A denote a commutative R-algebra which is two-dimensional as an R-vector space. (Recall that this simply means that A is a commutative ring containing R as a subring; A then becomes an R-vector space in the obvious way, and we are assuming that it has dimension two.) Prove that A is isomorphic to one of the three rings: $R \times R$, \mathbb{C}, $R[x]/(x^2)$.
4. Let R be a commutative ring. Let I, J_1, J_2 be ideals of R.
 (a) Show that if $I \subseteq J_1 \cup J_2$, then $I \subseteq J_1$ or $I \subseteq J_2$.
 (b) Let P be a prime ideal of R. Show that if $I \subseteq J_1 \cup J_2 \cup P$, then $I \subseteq J_1$ or $I \subseteq J_2$ or $I \subseteq P$.

III: Modules
5. Let R be a principal ideal domain and let A, B, C be torsion (i.e., rank 0) R-modules. Prove that if $\text{Hom}_R(A \otimes_R B, C) \neq 0$, then there is a non-zero prime ideal P of R such that each of the modules $A/P A, B/P B, C/P C$ is non-zero.
6. Determine all similarity classes of 3×3 matrices A over \mathbb{F}_2 satisfying $A^6 = I$.

IV: Field theory
7. Fix a prime p and let F_{p^2} denote the field with p^2 elements.
 (a) Define an injective ring homomorphism
 $$\varphi : F_{p^2} \hookrightarrow M_2(F_p)$$
 with $M_2(F_p)$ the ring of 2×2 matrices over F_p. (Hint: choose a basis for F_{p^2} over F_p.)
 (b) For which $\alpha \in F_{p^2}$ is $\varphi(\alpha)$ diagonalizable over F_p?
 (c) Is there $\alpha \in F_{p^2}$ such that $\varphi(\alpha)$ is similar (over \overline{F}_p) to a matrix
 $$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$
 with $\lambda \in \overline{F}_p$?
8. Let L/K be a Galois extension of fields with Galois group isomorphic to the symmetric group S_4. For which integers n do there exist $\alpha \in L$ of degree n over K? Justify your answer.