1. Consider the circuit equation

\[LI'' + RI' + IC = 0 \]

where \(L, C > 0 \) and \(R \geq 0 \).

(a) Rewrite the equation as a two-dimensional system.

(b) Show that the origin is asymptotically stable if \(R > 0 \) and neutrally stable if \(R = 0 \).

(c) Classify the fixed point at the origin, depending on whether \(R^2C - 4L \) is positive, negative, or zero, and sketch the phase portrait in all three cases.

2. Consider the system \(x' = y^3 - 4x, \ y' = y^3 - y - 3x \).

(a) Find all the fixed points and classify them.

(b) Show that \(|x(t) - y(t)| \) approaches 0 as \(t \) approaches \(\infty \) for all other trajectories. (Hint: Form a differential equation for \(x - y \).)

(c) Draw the phase portrait.

3. In a certain fishery, assume that fish are caught at a constant rate \(h \) (harvesting rate) independent of the size of the fish population. \(K \) is
the natural capacity of the fishery, \(r \) is the natural growth rate. Then the number of fish in the fishery at any time \(t \), \(y(t) \), satisfies

\[
\frac{dy}{dt} = r(1 - \frac{y}{K})y - h
\]

(a) Determine a condition (an inequality between \(h, r, K \)) such that any initial fish population will eventually become depleted (that is, \(y(t) = 0 \) for some \(t > 0 \)).

(b) On the other hand, under what conditions is there a stable fixed point \(y^* \)? Give an explicit formula for \(y^* \).

4. Consider the initial boundary value problem for a function \(u(x, t) \):

\[
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, \quad t > 0
\]

\[
u(L, t) = B, \quad \frac{\partial u}{\partial x}(0, t) = Q
\]

\[
u(x, 0) = u_0(x).
\]

(a) Explain in physical terms the meaning of the constants \(D \), \(B \), \(Q \) when \(u \) represents the temperature in a rod over the interval \(0 \leq x \leq L \).

(b) Determine the equilibrium solution \(u^*(x) \) that is independent of time.

(c) The general solution with initial solution \(u_0(x) \) has the form

\[
u(x, t) = u^*(x) + \sum_{k=1}^{\infty} e^{-\lambda_k t} \phi_k(x).
\]

Exhibit both the differential equation and the boundary conditions that each function \(\phi_k \) must satisfy.
5. Consider the Laplace equation
\[\Delta u = u_{xx} + u_{yy} = 0 \text{ in } x^2 + y^2 < R^2 \]
in a disk of radius \(R \). Find the solution \(u \) satisfying the boundary condition
\[u(R, \theta) = 3 \cos(2\theta) + 5 \sin(\theta) \quad (\theta \in [0, 2\pi]) \]

6. The motion of a string with friction is modeled by the modified wave equation
\[u_{tt} - c^2 u_{xx} + \gamma u_t = 0. \]
Here \(\gamma > 0 \) and \(u_x(0, t) = u_x(L, t) = 0 \).
(a) Let
\[E = \frac{1}{2} \int_0^L (u_t^2 + c^2 u_x^2) \, dx \]
and derive the identity
\[\frac{\partial E}{\partial t} = -\gamma \int_0^L u_t^2 \, dx \]
(b) Interpret this identity in terms of dissipation of energy.

7. Consider the following hat function \(f(x) \) given by
\[f(x) = \begin{cases} x & \text{if } 0 \leq x \leq \pi/2 \\ \pi - x & \text{if } \pi/2 \leq x \leq \pi \end{cases} \]
(a) Find the Fourier sine series for \(f(x) \).
(b) Find the Fourier sine series for \(f'(x) \).
(c) What can you say about their convergence at \(\pi/2 \).