Part I.

1. Let G be a finite group acting transitively on a set S. Let $H \trianglelefteq G$ be a normal subgroup of G. Let O_1, \ldots, O_s be the orbits of H acting on S.

 (a) Prove that these orbits all have the same cardinality.

 (b) Let $a \in S$ and let $G_a = \{g \in G \mid g.a = a\}$. Show that $s = |G : H G_a|$.

2. Let G be a finite group and P a non-trivial p-Sylow subgroup of G. Let H be the normalizer of P in G. Show that the normalizer of H in G is equal to H.

Part II. All rings are commutative with 1, and all ring homomorphisms take 1 to 1.

3. Let k be a field. Recall that a k-algebra is a ring R with a multiplicative identity 1_R and a map of rings $k \to R$ that takes the multiplicative identity of k to 1_R.

 (a) Let V and W be k-algebras. Show that $V \otimes_k W$ has a natural structure as a ring.

 (b) Show that the rings $\mathbb{C} \otimes_k \mathbb{C}$ and $\mathbb{C} \oplus \mathbb{C}$ are isomorphic rings.

4. Let R be a commutative ring with identity. Recall that an element $p \in R$ is prime if the ideal generated by p is a non-zero prime ideal.

 Show that if an element in an integral domain is expressible as a product of primes, then that expression is unique up to multiplication by units and permutations of the elements in the expression.

Part III.

5. Let k be a field and V a vector space of finite dimension n over k. Let A be a linear transformation of V with minimal polynomial $(x - a)^n$ for some $a \in k$.

 (a) Find the Jordan canonical form of A.

 (b) Describe the set of linear maps from V to itself which commute with A.

6. Let M be a free \mathbb{Z}-module with basis $\{e_1, e_2, e_3\}$. Let N be the submodule of M generated by $\{e_1 - e_2 - e_3, e_1 - e_2 + e_3, -2e_1 + 10e_2 - 6e_3\}$.

 (a) Describe the isomorphism type of N as a \mathbb{Z}-module.

 (b) Describe the isomorphism type of M/N as a \mathbb{Z}-module.

 (c) Find a submodule N' of M such that $M = N + N'$ and the sum is a direct sum, or explain why no such N' exists.
Part IV.

7. Let $f(x) = x^n - 1$.
 (a) Prove that the Galois group of $f(x)$ over the field of rational numbers is an abelian group.
 (b) Find the smallest n such that the Galois group is not cyclic.

8. Let K be a finite, separable extension of the field k. Prove that if K is a splitting field over k then every irreducible polynomial in $k[x]$ that has a root in K splits completely in $K[x]$.