Department of Mathematics and Statistics

University of Massachusetts

Basic Exam: Topology August 28, 2002

Answer five of seven questions. Indicate clearly which five questions you want to have graded. Justify your answers.

Passing Standard: For Master's level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

- 1. Let $f: X \to Y$ be a continuous map, with graph $\Gamma_f \subset X \times Y$.
 - (a) If X is connected, prove that Γ_f is connected.
 - (b) If Y is Hausdorff (which means the diagonal $\Delta \subset Y \times Y$ is closed), prove that Γ_f is closed.
- 2. Consider \mathbb{R} with the standard topology as well as \mathbb{R}_{ℓ} : the real numbers with the lower limit topology, whose basis consists of the intervals [a, b).
 - (a) Determine all continuous maps $f: \mathbb{R} \to \mathbb{R}_{\ell}$.
 - (b) Determine all continuous maps $f: \mathbb{R}_{\ell} \to \mathbb{R}$.
- 3. Prove that \mathbb{Q} (in the subspace topology of \mathbb{R}) is (a) totally disconnected, (b) not locally compact.
- 4. (a) Let $X = \mathbb{R}$ (standard topology), with the equivalence relation $x \sim y$ iff $x y \in \mathbb{Z}$. Prove that the quotient space X/\sim is homeomorphic to the unit circle $S^1 \subset \mathbb{R}^2$.
 - (b) Let $X = \mathbb{R}^2$ (standard topology), with the equivalence relation $(x_1, x_2) \sim (y_1, y_2)$ iff $x_1 y_1 \in \mathbb{Z}$ and $x_2 y_2 \in \mathbb{Z}$. Prove that X/\sim is compact Hausdorff.
- 5. Let X be a compact metric space, with metric d. Suppose the points $x_1, x_2, \dots \in X$ satisfy $d(x_n, x_m) \geq \varepsilon$ for all $n \neq m$. Prove that $\{x_n\}$ must be finite.
- 6. For a space X, the set $\mathcal{C}(X,\mathbb{R})$ of continuous \mathbb{R} -valued functions has two topologies: point-open (topology of pointwise convergence), compactopen. For a subspace Z of X, prove that the restriction map

$$r: \mathcal{C}(X,\mathbb{R}) \to \mathcal{C}(Z,\mathbb{R})$$

is continuous in each of these topologies.

- 7. Let \mathbb{R}^{ω} be the set of all sequences of real numbers (a countable product of copies of \mathbb{R}), with the product topology, and let \mathbb{R}^{∞} be the subspace consisting of sequences $x = (x_n)$ such that $x_n = 0$ for sufficiently large n (depending on x).
 - (a) Prove that \mathbb{R}^{∞} is dense in \mathbb{R}^{ω} .
 - (b) Find a countable dense subset of \mathbb{R}^{ω} .
 - (c) Prove that \mathbb{R}^{ω} has a countable basis.