Answer five of seven questions. Indicate clearly which five questions you want to have graded. Justify your answers.

Passing Standard: For Master’s level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete.

1. Let \(f : X \to Y \) be a continuous map, with \(\Gamma_f \subset X \times Y \).
 (a) If \(X \) is connected, prove that \(\Gamma_f \) is connected.
 (b) If \(Y \) is Hausdorff (which means the diagonal \(\Delta \subset Y \times Y \) is closed), prove that \(\Gamma_f \) is closed.

2. Consider \(\mathbb{R} \) with the standard topology as well as \(\mathbb{R}_\ell \): the real numbers with the lower limit topology, whose basis consists of the intervals \([a, b) \).
 (a) Determine all continuous maps \(f : \mathbb{R} \to \mathbb{R}_\ell \).
 (b) Determine all continuous maps \(f : \mathbb{R}_\ell \to \mathbb{R} \).

3. Prove that \(\mathbb{Q} \) (in the subspace topology of \(\mathbb{R} \)) is (a) totally disconnected, (b) not locally compact.

4. (a) Let \(X = \mathbb{R} \) (standard topology), with the equivalence relation \(x \sim y \iff x - y \in \mathbb{Z} \). Prove that the quotient space \(X/\sim \) is homeomorphic to the unit circle \(S^1 \subset \mathbb{R}^2 \).
 (b) Let \(X = \mathbb{R}^2 \) (standard topology), with the equivalence relation \((x_1, x_2) \sim (y_1, y_2) \iff x_1 - y_1 \in \mathbb{Z} \) and \(x_2 - y_2 \in \mathbb{Z} \). Prove that \(X/\sim \) is compact Hausdorff.

5. Let \(X \) be a compact metric space, with metric \(d \). Suppose the points \(x_1, x_2, \ldots \in X \) satisfy \(d(x_n, x_m) \geq \varepsilon \) for all \(n \neq m \). Prove that \(\{x_n\} \) must be finite.

6. For a space \(X \), the set \(C(X, \mathbb{R}) \) of continuous \(\mathbb{R} \)-valued functions has two topologies: point-open (topology of pointwise convergence), compact-open. For a subspace \(Z \) of \(X \), prove that the restriction map

\[
r : C(X, \mathbb{R}) \to C(Z, \mathbb{R})
\]

is continuous in each of these topologies.
7. Let \mathbb{R}^ω be the set of all sequences of real numbers (a countable product of copies of \mathbb{R}), with the product topology, and let \mathbb{R}^∞ be the subspace consisting of sequences $x = (x_n)$ such that $x_n = 0$ for sufficiently large n (depending on x).

(a) Prove that \mathbb{R}^∞ is dense in \mathbb{R}^ω.
(b) Find a countable dense subset of \mathbb{R}^ω.
(c) Prove that \mathbb{R}^ω has a countable basis.