Do 7 of the following 9 problems. Indicate clearly which problems should be graded.

Passing Standard: For Master’s level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Part I Linear Algebra

1. Let \(A \) be an \(n \times n \) matrix (over some field of scalars), and let \(c(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0 \) be its characteristic polynomial.
 (a) Prove that \(A \) is nonsingular if and only if \(c_0 \neq 0 \).
 (b) The Cayley–Hamilton Theorem says \(c(A) \) is equal to the 0 matrix. If \(A \) is nonsingular, use this to express \(A^{-1} \) as a polynomial in \(A \).

2. Determine whether or not the matrix \(A \) is diagonalizable over \(\mathbb{C} \):

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
3 & 0 & 1 \\
1 & -1 & 2
\end{bmatrix}
\]

[Hint: 2 and \(-1\) occur as eigenvalues.]

3. Let \(V \) be a finite-dimensional inner product space over \(\mathbb{R} \), with inner product \(\langle u, v \rangle \).
 (a) Prove that any set \(S \) of nonzero, pairwise orthogonal vectors is linearly independent.
 (b) If \(T : V \rightarrow V \) is a linear operator, satisfying \(\langle T(u), v \rangle = \langle u, T(v) \rangle \) for all \(u, v \), prove that the eigenvectors associated with distinct eigenvalues \(\lambda \) and \(\mu \) are orthogonal.

4. Let \(f : V \rightarrow F \) be a linear functional on a vector space \(V \) over a field \(F \), and let \(N \) be the nullspace (or kernel) of \(f \). Assume \(f \neq 0 \) so that \(N \neq V \). Fix a vector \(v_0 \in V - N \).
 (a) Given any \(v \in V \), show there exist \(c \in F \) and \(n \in N \) such that \(v = cv_0 + n \).
 (b) Show that the pair \((c, n)\) in (a) such that \(v = cv_0 + n \) is unique.
Part II Advanced Calculus

1. Let \(f : (a, b) \to \mathbb{R} \) be uniformly continuous, with \((a, b)\) a finite open interval in \(\mathbb{R}\).

 (a) Prove that \(f \) is bounded.

 (b) Must this be true if \((a, b)\) is replaced by \(\mathbb{R}\)?

 (c) Must \(f \) be bounded if \(f \) is only assumed to be continuous on \((a, b)\)?

2. Let \(f : [0, 1] \to \mathbb{R} \) be monotone increasing: \(c < d \) implies \(f(c) \leq f(d) \).
 Use the definition of the Riemann integral (comparing upper and lower sums relative to a partition of \([0, 1]\)) to prove that \(\int_0^1 f(x) \, dx \) exists.

3. Compute \(I = \iiint_R \sqrt{x^2 + y^2} \, dV \), where \(R \) is the region bounded by the planes \(z = 0 \), \(z = 6 \), and the cylinder \(x^2 + y^2 = 4 \).

4. Let \(F \) be the vector field on \(\mathbb{R}^3 \) given by
 \[
 F(x, y, z) = x^2 y \vec{i} + z \vec{j} + xyz \vec{k} = (x^2 y, z, xyz).
 \]
 Is there a vector field \(G \) on \(\mathbb{R}^3 \) such that \(F = \nabla \times G = \text{curl } G \)? Discuss why or why not.

5. Find real numbers \(a, b \) for which
 \[
 \int_0^\pi \left[\sin x - (ax^2 + bx) \right]^2 \, dx
 \]
 is minimized; thus \(ax^2 + bx \) is a least squares approximation of \(\sin x \) on \([0, \pi]\). You may differentiate under the integral sign and use the facts that \(\int_0^\pi x^2 \sin x \, dx = \pi^2 - 4 \) and \(\int_0^\pi x \sin x \, dx = \pi \).