BASIC EXAM - LINEAR ALGEBRA/ADVANCED CALCULUS
 UNIVERSITY OF MASSACHUSETTS, AMHERST DEPARTMENT OF MATHEMATICS AND STATISTICS JANUARY 2012

Do 7 of the following 9 problems.

Passing Standard: For Master's level, 60% with three questions essentially complete (including at least one from each part). For Ph. D. level, 75% with two questions from each part essentially complete.

Show your work!

Part I. Linear Algebra

1. Find the dimension of the image and kernel of the matrix $A:=\left(\begin{array}{cc}11 & 4 \\ 7 & 1 \\ 3 & 2 \\ 5 & 17 \\ 23 & 13\end{array}\right)\left(\begin{array}{ccccc}9 & 6 & 1 & 3 & 4 \\ 18 & 12 & 2 & 6 & 8\end{array}\right)$.

Also find a set of basis for each of these spaces.
2. For each integer $n \geq 1$, determine the number of similarity classes of 2×2 matrix A with integer entries and of order exactly n, i.e. $A^{n}=I$ but $A^{k} \neq I$ for any integer $0<k<n$. Show your work! Note: Recall two real $n \times n$ matrices B, C are similar if $B=M C M^{-1}$ for some real invertible matrix M.
3. For any two vectors $\vec{x}, \vec{y} \in \mathbf{R}^{n}$, denote by $\vec{x} \cdot \vec{y}$ the usual dot product (or inner product); it is a real number.
(a) For any linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, show that there exists a unique linear transformation $T^{*}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ that satisfies $(T \vec{x}) \cdot y=\vec{x} \cdot\left(T^{*} \vec{y}\right)$ for all $\vec{x}, \vec{y} \in \mathbf{R}^{n}$.
(b) Let $A=\left(a_{i j}\right)_{i, j}$ be the matrix for T with respect to the standard basis for \mathbf{R}^{n}. Write down the matrix for T^{*} with respect to the standard basis in terms of the $a_{i j}$.
Note: For both parts it is not enough to simply quote theorems or to write down the answers; you must justify your reasoning.
4. Denote by $\phi: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ the orthogonal projection map onto the plane P defined by $x-2 y-z=0$. This is a linear transformation from $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ determined by the conditions that (i) $\phi(\vec{x}) \in P$ for all $\vec{x} \in \mathbf{R}^{3}$, and (ii) for any $\vec{x} \in \mathbf{R}^{3}$, the length of $\phi(\vec{x})-\vec{x}$ is equal to the distance between \vec{x} and P.

Write down the matrix for ϕ with respect to the standard basis for \mathbf{R}^{3}. Justify your reasoning!

Part II. Advanced Calculus

1. Let $f(x), g(x)$ be real valued continuous functions on the interval closed $[a, b]$.
(a) Suppose that $g(x) \geq 0$ on $[a, b]$. Show that there exists a number $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x .
$$

(b) Give an example to show that the equality above is false if we do not require that $g(x) \geq 0$ on $[a, b]$.
2. A rectangle with length L and width W is cut into four smaller rectangles by two lines parallel to the sides. Find the maximum and minimum of the sum of the squares of the areas of the smaller rectangles.
3. Denote by \mathcal{C} the set of all continuous functions on $[0,1]$. For any two functions $f, g \in \mathcal{C}$, we have the Cauchy-Schwartz inequality

$$
\int_{0}^{1}|f(x) g(x)| d x \leq\left(\int_{0}^{1}|f(x)|^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}|g(x)|^{2} d x\right)^{1 / 2}
$$

Determine all functions $f, g \in \mathcal{C}$ for which this is an equality. Justify your reasoning.
4. Let a_{1}, a_{2}, \ldots be a sequence of real numbers that converges to A, and let b_{1}, b_{2}, \ldots be a sequence of real numbers that converges to B. Does the limit $\lim _{n \rightarrow \infty} \frac{a_{1} b_{1}+\ldots+a_{n} b_{n}}{n}$ exist? Find the limit if so, and give a counter-example if not. Justify your reasoning!
5. For any real number x, denote by $\llbracket x \rrbracket$ the largest integer $\leq x$. Compute the double integral $\iint_{R} \llbracket x+y \rrbracket d A$, where $R=\left\{(x, y) \in \mathbf{R}^{2}: 1 \leq x \leq 3,2 \leq y \leq 5\right\}$.

