Advanced Calculus/Linear Algebra Basic Exam January 2007

Do 7 of the following 9 problems. Indicate clearly on your answer booklet which problems should be graded.

Passing standard: For Master's level, 60% with three questions essentially correct (including at least one from each part). For Ph.D. level, 75% with two questions from each part essentially complete.

Part I: Linear algebra

1. (a) Let A be an 8×8 complex matrix with characteristic polynomial

$$
p_{A}(x)=(x-1)^{4}(x+2)^{2}\left(x^{2}+1\right)
$$

and minimal polynomial

$$
m_{A}(x)=(x-1)^{2}(x+2)^{2}\left(x^{2}+1\right)
$$

Determine all possible Jordan canonical forms of A.
(b) What is the dimension of the eigenspace for $\lambda=1$ in each case?
2. Let $V=\mathbf{R}^{3}$ (regarded as a space of column vectors) and consider the bilinear form

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbf{R}
$$

given by

$$
\left\langle v_{1}, v_{2}\right\rangle=v_{1}^{t} \cdot\left[\begin{array}{ccc}
4 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 1
\end{array}\right] \cdot v_{2}
$$

with v_{1}^{t} the transpose of v_{1}. Find an orthogonal basis for V with respect to this pairing. Does V have an orthonormal basis with respect to this pairing?
3. Let $V=\mathbf{C}^{2}$ and let $T: V \rightarrow V$ be the linear transformation with matrix

$$
\left[\begin{array}{cc}
14 & -16 \\
9 & -10
\end{array}\right]
$$

Find all T-invariant subspaces of V : that is, find all subspaces $W \subseteq V$ such that $T(W) \subseteq W$.
4. (a) Let V be a finite dimensional vector space over a field F and let T : $V \rightarrow V$ be a linear transformation. Suppose that $V=\operatorname{im} T+\operatorname{ker} T$; that is, V is spanned by the image and kernel of T. Prove that V is then the direct sum of $\operatorname{im} T$ and $\operatorname{ker} T$.
(b) Give a counterexample to the above assertion when V is infinite dimensional.

Part II: Advanced calculus

1. Find the value $\alpha \in \mathbf{R}$ which minimizes

$$
\int_{C_{\alpha}}\left(y^{2}+1\right) d x+x d y
$$

where C_{α} is the arc of the curve $y=\alpha x(1-x)$ from $(0,0)$ to $(1,0)$.
2. Let $f(x)=|x|^{3}$. Prove that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ exist for all real x, while $f^{\prime \prime \prime}(0)$ does not exist.
3. Let $f(x)$ be a real differentiable function defined for $x \geq 1$ such that

$$
f(1)=1 ; \quad f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}
$$

Show that

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and is less than $1+\frac{\pi}{4}$.
4. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right) e^{-2 x} d x
$$

5. Find the point on the intersection of the parabaloid $z=x^{2}+y^{2}$ and the plane $x+y+2 z=2$ which is closest to the origin.
